内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。基本的神经网络案例,在于真正的入门神经网络的构建。版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@
版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。
1 神经网络基本结构定义
- 28*28=784个像素点,第一层神经元256,第二层神经元128
2 神经网络构建
-
变量初始化
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import input_data mnist = input_data.read_data_sets('data/', one_hot=True) Extracting data/train-images-idx3-ubyte.gz Extracting data/train-labels-idx1-ubyte.gz Extracting data/t10k-images-idx3-ubyte.gz Extracting data/t10k-labels-idx1-ubyte.gz # NETWORK TOPOLOGIES #第一层神经元 n_hidden_1 = 256 #第二层神经元 n_hidden_2 = 128 #28*28 784像素点 n_input = 784 # 类别10 n_classes = 10 # INPUTS AND OUTPUTS x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # NETWORK PARAMETERS stddev = 0.1 #初始化 weights = { 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)), 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev)) } #初始化 biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } print ("NETWORK READY") 复制代码
-
前向传播(每一层增加激活函数sigmoid,最后一层不加sigmoid)
def multilayer_perceptron(_X, _weights, _biases): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2'])) return (tf.matmul(layer_2, _weights['out']) + _biases['out']) 复制代码
-
损失变量和优化器定义
-
softmax_cross_entropy_with_logits交叉熵损失函数(参数pred预测值),reduce_mean除以样本总数。
-
GradientDescentOptimizer采用梯度下降优化求解
# PREDICTION pred = multilayer_perceptron(x, weights, biases) # LOSS AND OPTIMIZER cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost) #准确率求解 corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(corr, "float")) # INITIALIZER init = tf.global_variables_initializer() print ("FUNCTIONS READY") 复制代码
-
按照Batch迭代
training_epochs = 20 batch_size = 100 display_step = 4 # LAUNCH THE GRAPH sess = tf.Session() sess.run(init) # OPTIMIZE for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # ITERATION(按照Batch迭代,每一次迭代100) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) #填充值 feeds = {x: batch_xs, y: batch_ys} #sess.run(模型训练) sess.run(optm, feed_dict=feeds) avg_cost += sess.run(cost, feed_dict=feeds) avg_cost = avg_cost / total_batch # DISPLAY if (epoch+1) % display_step == 0: print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost)) feeds = {x: batch_xs, y: batch_ys} #sess.run(准确率求解) train_acc = sess.run(accr, feed_dict=feeds) print ("TRAIN ACCURACY: %.3f" % (train_acc)) feeds = {x: mnist.test.images, y: mnist.test.labels} test_acc = sess.run(accr, feed_dict=feeds) print ("TEST ACCURACY: %.3f" % (test_acc)) print ("OPTIMIZATION FINISHED") 复制代码
3 总结
基本的神经网络案例,在于真正的入门神经网络的构建。
版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联 秦凯新 于深圳 2018120892153
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
人工智能产品经理——AI时代PM修炼手册
张竞宇 / 电子工业出版社 / 2018-6 / 59
随着人工智能热潮的兴起,企业对人工智能领域产品经理的人才需求也开始井喷,人工智能产品经理成为顺应时代潮流的重要人力资源。实际上,人工智能确实给现有的产品和服务带来了全方位的升级,这也给产品经理从业人员提出了更高的要求,是关注人工智能产品的产品经理们面临的一次关键转型考验。 《人工智能产品经理——AI时代PM修炼手册》从知识体系、能力模型、沟通技巧等方面帮助大家系统地梳理了人工智能产品经理所必......一起来看看 《人工智能产品经理——AI时代PM修炼手册》 这本书的介绍吧!