内容简介:从 0 开始制作一个 NodeJS 命令行验证码识别工具。实现如下效果。通常命令行工具入口名字为这样,我们告诉 *nix 系统,JavaScript 文件的解释器应该是
从 0 开始制作一个 NodeJS 命令行验证码识别工具。实现如下效果。
初始化项目
# 创建 recognition 项目 mkdir recognition cd recognition npm init -y # 安装主依赖 yarn add images tesseract.js # 安装 工具 依赖 yarn add chalk yargs # 可选依赖 yarn add socks5-http-client 复制代码
依赖说明
-
images :Node.js 轻量级跨平台图像编码库,用于处理下载下来的图片
-
tesseract.js :纯 JS 实现的 OCR(光学字符识别)工具,用于图像内容识别
-
chalk :让命令行内容样式好看
-
yargs :命令行参数解析器
-
socks5-http-client :SOCKS v5,用于设置代理,在需要拉取某些不能直接访问的资源时使用, request proxy 例子
项目准备
新建 cli.js
通常命令行工具入口名字为 cli.js
,我们新建一个 cli.js
文件,并在开头写上:
#!/usr/bin/env node 复制代码
这样,我们告诉 *nix 系统,JavaScript 文件的解释器应该是 /usr/bin/env node
,它查找本地安装的 node
。
配置 bin
// package.json { "bin": { "reg": "./cli.js" } } 复制代码
这样配置完成后,别人 npm install -g @chenng/recognition
的包,就可以直接通过命令行运行了:
reg --url=https://static.chenng.cn/imgs/test_img.png 复制代码
link 本地开发
我们如何能够在本地可以使用 rec
命令呢?只需要把本项目 link 即可:
yarn link 复制代码
核心逻辑
主要逻辑在 cli.js
和 recognize.js
中。这里有几个注意点:
encoding: null
const Tesseract = require('tesseract.js'); const images = require('images'); const requset = require('request'); const fs = require('fs'); const { promisify } = require('util'); const chalk = require('chalk'); const writeFile = promisify(fs.writeFile); const rp = promisify(requset); class Recognize { constructor(url) { Recognize.downloadDir = `${__dirname}/dist/`; Recognize.downloadFile = `${__dirname}/dist/temp.png`; this.url = url; this.start(); } async start() { const data = await this.downloadImg(); await writeFile(Recognize.downloadFile, data); this.recognize(); const result = await Tesseract.recognize(Recognize.downloadFile, { lang: 'eng', tessedit_char_blacklist: 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', }); console.log(` 识别成功! 识别结果为:${chalk.green(result.text)} `); } async downloadImg() { if (!fs.existsSync(Recognize.downloadDir)) { fs.mkdirSync(Recognize.downloadDir); console.log(`创建了 ${Recognize.downloadDir} 文件夹`); } const res = await rp({ url: this.url, method: 'GET', encoding: null, }); return res.body; } recognize() { // 放大图片,并覆盖源文件 images(Recognize.downloadFile) .size(400) .save(Recognize.downloadFile); } } module.exports = Recognize; 复制代码
具体可以查看源码仓库: github.com/ringcrl/rec…
以上所述就是小编给大家介绍的《制作一个Node命令行图像识别工具》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 原 荐 Qt封装百度人脸识别+图像识别
- 走进AI时代的文档识别技术 之表格图像识别
- 揭秘“图像识别”的工作原理
- REM图像识别市场分析
- 图像识别攻击还没完全解决,语音识别攻击又来了!
- 零基础小白快速打造图像识别模型
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Excel图表之道
刘万祥 / 电子工业出版社 / 2010年4月 / 59.00元
本书介绍作者在实践工作中总结出来的一套“杂志级商务图表沟通方法”,告诉读者如何设计和制作达到杂志级质量的、专业有效的商务图表,作者对诸如《商业周刊》、《经济学人》等全球顶尖商业杂志上的精彩图表案例进行分析,给出其基于Excel的实现方法,包括数据地图、动态图表、仪表板等众多高级图表技巧。 本书提供大量图表模板源文件,包括详细的制作步骤,提供网上下载。提供博客支持。 本书定位于中高级Ex......一起来看看 《Excel图表之道》 这本书的介绍吧!