信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

栏目: 编程工具 · 发布时间: 5年前

内容简介:版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。版权声

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

1 信用卡欺诈行为案例集预处理

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

data = pd.read_csv("creditcard.csv")
data.head()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战
from sklearn.preprocessing import StandardScaler
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].reshape(-1, 1))
data = data.drop(['Time','Amount'],axis=1)
data.head()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

2 K折交叉验证

def printing_Kfold_scores(x_train_data, y_train_data):

        fold = KFold(len(y_train_data),5,shuffle=False) 
        # Different C parameters
        # 0.01 倒数其实是100 
        # 0.1其实是10
        c_param_range = [0.01,0.1,1,10,100]
    
        results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
        results_table['C_parameter'] = c_param_range
    
        # the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
        j = 0
        for c_param in c_param_range:
            print('-------------------------------------------')
            print('C parameter: ', c_param)
            print('-------------------------------------------')
            print('')
    
            recall_accs = []
            for iteration, indices in enumerate(fold,start=1):
                lr = LogisticRegression(C = c_param, penalty = 'l1')]
                lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
                y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)
                recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
                recall_accs.append(recall_acc)
                print('Iteration ', iteration,': recall score = ', recall_acc)
            results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
            j += 1
            print('')
            print('Mean recall score ', np.mean(recall_accs))
            print('')
    
        best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
        
        # Finally, we can check which C parameter is the best amongst the chosen.
        print('*********************************************************************************')
        print('Best model to choose from cross validation is with C parameter = ', best_c)
        print('*********************************************************************************')
        return best_c  
复制代码

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

3 不均衡问题处理策略(OverSample与UnderSample)

# 找出非class列
    X = data.ix[:, data.columns != 'Class']
    # 找出class列
    y = data.ix[:, data.columns == 'Class']
    
    # 找出欺诈的个数和索引492
    number_records_fraud = len(data[data.Class == 1])
    fraud_indices = np.array(data[data.Class == 1].index)
    
    # Picking the indices of the normal classes(找出正常的索引)
    normal_indices = data[data.Class == 0].index
    
    # Out of the indices we picked, randomly select "x" number (number_records_fraud)(从正常的行为中选择接近欺诈的样本索引)492
    random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False)
    random_normal_indices = np.array(random_normal_indices)
    
    # Appending the 2 indices(索引组合) 892
    under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
    
    # iloc通过行号获取行数据
    under_sample_data = data.iloc[under_sample_indices,:]
    
    X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class']
    y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class']
    
    # Showing ratio
    print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))
    print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))
    print("Total number of transactions in resampled data: ", len(under_sample_data))

    Percentage of normal transactions:  0.5
    Percentage of fraud transactions:  0.5
    Total number of transactions in resampled data:  984
复制代码

4 训练集与测试集划分

from sklearn.cross_validation import train_test_split
    
    X特征输入,y表示label,test_size划分的测试集比例,没有设置random_state,每次取得的
    结果就不一样,它的随机数种子与当前系统时间有关。其实就是该组随机数的编号,在需要重
    复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到
    随机数组是一样的。但填0或不填,每次都不一样。随机数的产生取决于种子,随机数和种子之
    间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生
    相同的随机数。
    
    全部样本拆分
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
    
    print("Number transactions train dataset: ", len(X_train))
    print("Number transactions test dataset: ", len(X_test))
    print("Total number of transactions: ", len(X_train)+len(X_test))
    
    Number transactions train dataset:  199364
    Number transactions test dataset:  85443
    Total number of transactions:  284807
   

    # Undersampled dataset 
    X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample , y_undersample, test_size = 0.3, random_state = 0)
    
    print("")
    print("Number transactions train dataset: ", len(X_train_undersample))
    print("Number transactions test dataset: ", len(X_test_undersample))
    print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))
    
    Number transactions train dataset:  688
    Number transactions test dataset:  296
    Total number of transactions:  984
复制代码

5基于低采样数据集X_test_undersample模型训练与测试(均衡数据)

#Recall = TP/(TP+FN)
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold, cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report 

 函数调用
 best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)

 -------------------------------------------
C parameter:  0.01
-------------------------------------------

Iteration  1 : recall score =  0.958904109589
Iteration  2 : recall score =  0.917808219178
Iteration  3 : recall score =  1.0
Iteration  4 : recall score =  0.972972972973
Iteration  5 : recall score =  0.954545454545

Mean recall score  0.960846151257

-------------------------------------------
C parameter:  0.1
-------------------------------------------

Iteration  1 : recall score =  0.835616438356
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.915254237288
Iteration  4 : recall score =  0.932432432432
Iteration  5 : recall score =  0.878787878788

Mean recall score  0.885020937099

-------------------------------------------
C parameter:  1
-------------------------------------------

Iteration  1 : recall score =  0.835616438356
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.945945945946
Iteration  5 : recall score =  0.893939393939

Mean recall score  0.900923434357

-------------------------------------------
C parameter:  10
-------------------------------------------

Iteration  1 : recall score =  0.849315068493
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.959459459459
Iteration  5 : recall score =  0.893939393939

Mean recall score  0.906365863087

-------------------------------------------
C parameter:  100
-------------------------------------------

Iteration  1 : recall score =  0.86301369863
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.959459459459
Iteration  5 : recall score =  0.893939393939

Mean recall score  0.909105589115

*********************************************************************************
Best model to choose from cross validation is with C parameter =  0.01
*********************************************************************************
复制代码

5 混合矩阵

def plot_confusion_matrix(cm, classes,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    """
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=0)
    plt.yticks(tick_marks, classes)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
复制代码

6 混合矩阵作用于低采样数据集X_test_undersample的展示

import itertools
    lr = LogisticRegression(C = best_c, penalty = 'l1')
    lr.fit(X_train_undersample,y_train_undersample.values.ravel())
    y_pred_undersample = lr.predict(X_test_undersample.values)
    
    # Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
    np.set_printoptions(precision=2)
    
    print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
    
    # Plot non-normalized confusion matrix
    class_names = [0,1]
    plt.figure()
    plot_confusion_matrix(cnf_matrix
                          , classes=class_names
                          , title='Confusion matrix')
    plt.show()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

7 混合矩阵作用于全数据集X_test.values的展示

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。 lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred = lr.predict(X_test.values)

# Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test,y_pred)
    np.set_printoptions(precision=2)
    
    print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
    
    # Plot non-normalized confusion matrix
    class_names = [0,1]
    plt.figure()
    plot_confusion_matrix(cnf_matrix
                          , classes=class_names
                          , title='Confusion matrix')
    plt.show()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

8 基于全数据集进行k折交叉验证(不均衡数据)

8.1 全数据集进行k折交叉验证

best_c = printing_Kfold_scores(X_train,y_train)
-------------------------------------------
C parameter:  0.01
-------------------------------------------

Iteration  1 : recall score =  0.492537313433
Iteration  2 : recall score =  0.602739726027
Iteration  3 : recall score =  0.683333333333
Iteration  4 : recall score =  0.569230769231
Iteration  5 : recall score =  0.45

Mean recall score  0.559568228405

-------------------------------------------
C parameter:  0.1
-------------------------------------------

Iteration  1 : recall score =  0.567164179104
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.683333333333
Iteration  4 : recall score =  0.584615384615
Iteration  5 : recall score =  0.525

Mean recall score  0.595310250644

-------------------------------------------
C parameter:  1
-------------------------------------------

Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.716666666667
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.5625

Mean recall score  0.612645688837

-------------------------------------------
C parameter:  10
-------------------------------------------

Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.733333333333
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.575

Mean recall score  0.61847902217

-------------------------------------------
C parameter:  100
-------------------------------------------

Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.733333333333
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.575

Mean recall score  0.61847902217

*********************************************************************************
Best model to choose from cross validation is with C parameter =  10.0
*********************************************************************************
复制代码

8.2 全数据集混合矩阵

# 不均衡样本偏向于多的样本,误伤率低
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)

# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
                      , classes=class_names
                      , title='Confusion matrix')
plt.show()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

9 逻辑回归基于阈值进行判断(概率)

lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

plt.figure(figsize=(10,10))

j = 1
for i in thresholds:
    y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i
    
    plt.subplot(3,3,j)
    j += 1
    
    # Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)
    np.set_printoptions(precision=2)

    print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

    # Plot non-normalized confusion matrix
    class_names = [0,1]
    plot_confusion_matrix(cnf_matrix
                          , classes=class_names
                          , title='Threshold >= %s'%i)  

Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  0.986394557823
Recall metric in the testing dataset:  0.931972789116
Recall metric in the testing dataset:  0.884353741497
Recall metric in the testing dataset:  0.836734693878
Recall metric in the testing dataset:  0.748299319728
Recall metric in the testing dataset:  0.571428571429 
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

10 基于SMOTE 进行数据预处理

信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战
import pandas as pd
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
credit_cards=pd.read_csv('creditcard.csv')

columns=credit_cards.columns
# The labels are in the last column ('Class'). Simply remove it to obtain features columns
features_columns=columns.delete(len(columns)-1)

features=credit_cards[features_columns]
labels=credit_cards['Class']
features_train, features_test, labels_train, labels_test = train_test_split(features, 
                                                                        labels, 
                                                                        test_size=0.2, 
                                                                        random_state=0)
oversampler=SMOTE(random_state=0)
os_features,os_labels=oversampler.fit_sample(features_train,labels_train)

len(os_labels[os_labels==1])
227454

os_features = pd.DataFrame(os_features)
os_labels = pd.DataFrame(os_labels)
best_c = printing_Kfold_scores(os_features,os_labels)


-------------------------------------------
C parameter:  0.01
-------------------------------------------

Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.968861347792
Iteration  4 : recall score =  0.957595541926
Iteration  5 : recall score =  0.958430881173

Mean recall score  0.933989438728

-------------------------------------------
C parameter:  0.1
-------------------------------------------

Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970410534469
Iteration  4 : recall score =  0.959980655302
Iteration  5 : recall score =  0.960178498807

Mean recall score  0.935125822266

-------------------------------------------
C parameter:  1
-------------------------------------------

Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970454796946
Iteration  4 : recall score =  0.96014552489
Iteration  5 : recall score =  0.960596168431

Mean recall score  0.935251182603

-------------------------------------------
C parameter:  10
-------------------------------------------

Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.97065397809
Iteration  4 : recall score =  0.960343368396
Iteration  5 : recall score =  0.960530220596

Mean recall score  0.935317397966

-------------------------------------------
C parameter:  100
-------------------------------------------

Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970543321899
Iteration  4 : recall score =  0.960211472725
Iteration  5 : recall score =  0.960903924995

Mean recall score  0.935343628474

*********************************************************************************
Best model to choose from cross validation is with C parameter =  100.0
*********************************************************************************

lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(os_features,os_labels.values.ravel())
y_pred = lr.predict(features_test.values)

# Compute confusion matrix
cnf_matrix = confusion_matrix( ,y_pred)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
                      , classes=class_names
                      , title='Confusion matrix')
plt.show()
复制代码
信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战

11 总结

OverSample与UnderSample对比发现,基于SMOTE,数据的准确率和召回率得到了很大程度的提高。

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq.com,如有任何学术交流,可随时联系。

秦凯新 于深圳 201812081811


以上所述就是小编给大家介绍的《信用卡欺诈行为逻辑回归数据分析-大数据ML样本集案例实战》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Java高并发编程详解

Java高并发编程详解

汪文君 / 机械工业出版社 / 2018-6 / 89.00元

本书共分为四个部分:部分详细地介绍了Java多线程的基本用法和各个API的使用,并且着重介绍了线程与Java虚拟机内存之间的关系。第二部分由线程上下文类加载器方法引入,介绍为什么在线程中要有上下文类加载器的方法函数,从而掌握类在JVM的加载和初始化的整个过程。第三部分主要围绕着volatile关键字展开,在该部分中我们将会了解到现代CPU的架构以及Java的内存模型(JMM)。后一部分,主要站在架......一起来看看 《Java高并发编程详解》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具