Keras中几个重要函数用法

栏目: 数据库 · 发布时间: 6年前

内容简介:Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。你也可以查看泛型模型来学习建立更复杂的模型。模块需导入包:激活函数有如下几种类型可选:

Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。你也可以查看泛型模型来学习建立更复杂的模型。

Keras中几个重要函数用法

模块需导入包:

from keras.models import Sequential  
from keras.layers import Dense, Dropout, Activation, Flatten  
from keras.layers.convolutional import Conv2D  
from keras.layers.pooling import MaxPooling2D  
from keras.layers import Embedding, LSTM  
from keras.utils import np_utils  
from keras.datasets import mnist

激活函数有如下几种类型可选:

softmax、elu、softplus、softsign、relu、tanh、sigmoid、hard_sigmoid、linear

Dense(全连接层)

Dense层(https://keras-cn.readthedocs.io/en/latest/layers/core_layer/)

keras.layers.core.Dense ( units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None  )  

units:大于0的整数,代表该层的输出维度。 activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x) usebias: 布尔值,是否使用偏置项 kernelinitializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

Keras模型保存

我们不推荐使用pickle或cPickle来保存Keras模型。

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

  • 模型的结构,以便重构该模型

  • 模型的权重

  • 训练配置(损失函数,优化器等)

  • 优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译

例子:

from keras.models import load_model
model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model  # deletes the existing model
# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用:

# save as JSON
json_string = model.to_json()
# save as YAML
yaml_string = model.to_yaml()

这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。

当然,你也可以从保存好的json文件或yaml文件中载入模型:

# model reconstruction from JSON:
from keras.models import model_from_json
model = model_from_json(json_string)
# model reconstruction from YAML
model = model_from_yaml(yaml_string)

如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。注意,在使用前需要确保你已安装了HDF5和其 Python 库h5py

model.save_weights('my_model_weights.h5')
如果你需要在代码中初始化一个完全相同的模型,请使用:
model.load_weights('my_model_weights.h5')

如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:

model.load_weights('my_model_weights.h5', by_name=True)

例如:

"""
假如原模型为:
    model = Sequential()
    model.add(Dense(2, input_dim=3, name="dense_1"))
    model.add(Dense(3, name="dense_2"))
    ...
    model.save_weights(fname)
"""
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))  # will be loaded
model.add(Dense(10, name="new_dense"))  # will not be loaded
# load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)

可视化

使用方式

keras.utils.vis_utils模块提供了画出Keras模型的函数(利用graphviz)

该函数将画出模型结构图,并保存成图片:

from keras.utils import plot_model
plot_model(model, to_file='model.png')

具体可参考:可视化visualization(https://keras-cn.readthedocs.io/en/latest/other/visualization/)

解决办法

  • 首先,安装pip安装pygot和graphviz之后,运行上面的可视化代码仍然报错

  • 查询说是Windows下面只能采用安装包的方式进行安装,不能pip安装.....

最终,费了很大的周折之后,终于找到解决办法:

  • 首先,安装graphviz(官方下载网址:https://graphviz.gitlab.io/_pages/Download/Download_windows.html),然后在环境变量里面配置其路径(好像也没有什么用)

  • 然后在代码里面设置如下:

import os
os.environ["PATH"] += os.pathsep + 'D:/install/Program Files (x86)/Graphviz2.38/bin/'
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)

OK,终于成功了。期间还涉及到说按照graphviz->grapphviz软件本身->pydot的顺序按照软件什么的,但是问题并没有解决,还是得在程序中引入地址。

参考文献

  • Keras中文文档:https://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

JavaScript经典实例

JavaScript经典实例

Shelley Powers / 李强 / 中国电力出版社 / 2012-3 / 78.00元

《JavaScript经典实例》各节中的完整代码解决了常见的编程问题,并且给出了在任何浏览器中构建Web应用程序的技术。只需要将这些代码示例复制并粘贴到你自己的项目中就行了,可以快速完成工作,并且在此过程中学习JavaScript的很多知识。你还将学习如何利用ECMAScript5和HTML5中的最新功能,包括新的跨域挂件通信技术、HTML5的video和audio元素,以及绘制画布。《JavaS......一起来看看 《JavaScript经典实例》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

html转js在线工具
html转js在线工具

html转js在线工具