负载均衡算法 — 平滑加权轮询

栏目: 服务器 · 发布时间: 6年前

内容简介:在负载均衡算法 — 轮询 一文中,我们就指出了加权轮询算法一个明显的缺陷。即在某些特殊的权重下,加权轮询调度会生成不均匀的实例序列,这种不平滑的负载可能会使某些实例出现瞬时高负载的现象,导致系统存在宕机的风险。为了解决这个调度缺陷,就提出了调度算法。为了说明平滑加权轮询调度的平滑性,使用以下 3 个特殊的权重实例来演示调度过程。

在负载均衡算法 — 轮询 一文中,我们就指出了加权轮询算法一个明显的缺陷。即在某些特殊的权重下,加权轮询调度会生成不均匀的实例序列,这种不平滑的负载可能会使某些实例出现瞬时高负载的现象,导致系统存在宕机的风险。为了解决这个调度缺陷,就提出了调度算法。

负载均衡算法 — 平滑加权轮询

待解决的问题

为了说明平滑加权轮询调度的平滑性,使用以下 3 个特殊的权重实例来演示调度过程。

服务实例 权重值
192.168.10.1:2202 5
192.168.10.2:2202 1
192.168.10.3:2202 1

我们已经知道通过加权轮询 算法调度后,会生成如下不均匀的调度序列。

请求 选中的实例
1 192.168.10.1:2202
2 192.168.10.1:2202
3 192.168.10.1:2202
4 192.168.10.1:2202
5 192.168.10.1:2202
6 192.168.10.2:2202
7 192.168.10.3:2202

接下来,我们就使用平滑加权轮询算法调度上述实例,看看生成的实例序列如何?

算法描述

假设有 N 台实例 S = {S1, S2, …, Sn},配置权重 W = {W1, W2, …, Wn},有效权重 CW = {CW1, CW2, …, CWn}。每个实例 i 除了存在一个配置权重 Wi 外,还存在一个当前有效权重 CWi,且 CWi 初始化为 Wi;指示变量 currentPos 表示当前选择的实例 ID,初始化为 -1;所有实例的配置权重和为 weightSum;

那么,调度算法可以描述为:

1、初始每个实例 i 的 当前有效权重 CWi 为 配置权重 Wi,并求得配置权重和 weightSum;

2、选出 当前有效权重 的实例,将 当前有效权重 CWi 减去所有实例的 权重和 weightSum,且变量 currentPos 指向此位置;

3、将每个实例 i 的 当前有效权重 CWi 都加上 配置权重 Wi;

4、取到变量 currentPos 指向的实例;

5、每次调度重复上述步骤 2、3、4;

上述 3 个服务,配置权重和 weightSum 为 7,其调度过程如下:

请求 选中前的当前权重 currentPos 选中的实例 选中后的当前权重
1 {5, 1, 1} 0 192.168.10.1:2202 {-2, 1, 1}
2 {3, 2, 2} 0 192.168.10.1:2202 {-4, 2, 2}
3 {1, 3, 3} 1 192.168.10.2:2202 {1, -4, 3}
4 {6, -3, 4} 0 192.168.10.1:2202 {-1, -3, 4}
5 {4, -2, 5} 2 192.168.10.3:2202 {4, -2, -2}
6 {9, -1, -1} 0 192.168.10.1:2202 {2, -1, -1}
7 {7, 0, 0} 0 192.168.10.1:2202 {0, 0, 0}
8 {5, 1, 1} 0 192.168.10.1:2202 {-2, 1, 1}

可以看出上述调度序列分散是非常均匀的,且第 8 次调度时当前有效权重值又回到 {0, 0, 0},实例的状态同初始状态一致,所以后续可以一直重复调度操作。

此轮询调度算法思路首先被 Nginx 开发者提出,见 phusion/nginx 部分。

代码实现

这里使用 PHP 来实现,源码见 fan-haobai/load-balance 部分。

class SmoothWeightedRobin implements RobinInterface
{
    private $services = array();

    private $total;

    private $currentPos = -1;

    public function init(array $services)
    {
        foreach ($services as $ip => $weight) {
            $this->services[] = [
                'ip'      => $ip,
                'weight'  => $weight,
                'current_weight' => $weight,
            ];
        }
        $this->total = count($this->services);
    }

    public function next()
    {
        // 获取最大当前有效权重实例的位置
        $this->currentPos = $this->getMaxCurrentWeightPos();

        // 当前权重减去权重和
        $currentWeight = $this->getCurrentWeight($this->currentPos) - $this->getSumWeight();
        $this->setCurrentWeight($this->currentPos, $currentWeight);

        // 每个实例的当前有效权重加上配置权重
        $this->recoverCurrentWeight();

        return $this->services[$this->currentPos]['ip'];
    }
}

其中, getSumWeight() 为每个实例个配置权重和; getCurrentWeight()setCurrentWeight() 分别用于获取和设置指定实例的当前有效权重; getMaxCurrentWeightPos() 求得最大当前有效权重的实例位置,实现如下:

public function getMaxCurrentWeightPos()
{
    $currentWeight = $pos = 0;
    foreach ($this->services as $index => $service) {
        if ($service['current_weight'] > $currentWeight) {
            $currentWeight = $service['current_weight'];
            $pos = $index;
        }
    }

    return $pos;
}

recoverCurrentWeight() 用于调整每个实例的当前有效权重,即加上配置权重,实现如下:

public function recoverCurrentWeight()
{
    foreach ($this->services as $index => &$service) {
        $service['current_weight'] += $service['weight'];
    }
}

需要注意的是,在配置 services 服务列表时,同样需要指定其权重:

$services = [
    '192.168.10.1:2202' => 5,
    '192.168.10.2:2202' => 1,
    '192.168.10.3:2202' => 1,
];

数学证明

可惜的是,关于此调度算法严谨的数学证明少之又少,不过网友 tenfy 给出的 安大神 证明过程,非常值得参考和学习。

证明权重合理性

假如有 n 个结点,记第 i 个结点的权重是 $x_i$,设总权重为 $S = x_1 + x_2 + … + x_n$。选择分两步:

1、为每个节点加上它的权重值;

2、选择最大的节点减去总的权重值;

n 个节点的初始化值为 [0, 0, …, 0],数组长度为 n,值都为 0。第一轮选择的第 1 步执行后,数组的值为 $[x_1, x_2, …, x_n]$。

假设第 1 步后,最大的节点为 j,则第 j 个节点减去 S。

所以第 2 步的数组为 $[x_1, x_2, …, x_j-S, …, x_n]$。 执行完第 2 步后,数组的和为:

$x_1 + x_2 + … + x_j-S + … + x_n => x_1 + x_2 + … + x_n - S = S - S = 0$

由此可见,每轮选择第 1 步操作都是数组的总和加上 S,第 2 步总和再减去 S,所以每轮选择完后的数组总和都为 0。

假设总共执行 S 轮选择,记第 i 个结点选择 $m_i$ 次。第 i 个结点的当前权重为 $w_i$。 假设节点 j 在第 t 轮(t < S)之前,已经被选择了 $x_j$ 次,记此时第 j 个结点的当前权重为 $w_j = t * x_j - x_j * S = (t - S) * x_j < 0$, 因为 t 恒小于 S,所以 $w_j < 0$。

前面假设总共执行 S 轮选择,则剩下 S-t 轮,上面的公式 $w_j = (t - S) * x_j + (S - t) * x_j = 0$。 所以在剩下的选择中,$w_j$ 永远小于等于 0,由于上面已经证明任何一轮选择后,数组总和都为 0,则必定存在一个节点 k 使得 $w_k > 0$,永远不会再选中 $x_j$。

由此可以得出,第 i 个结点最多被选中 $x_i$ 次,即 $m_i <= x_i$。

因为 $S = m_1 + m_2 + … + m_n$ 且 $S = x_1 + x_2 + … + x_n$。 所以,可以得出 $m_i == x_i$。

证明平滑性

证明平滑性,只要证明不要一直都是连续选择那一个节点即可。

跟上面一样,假设总权重为 S,假如某个节点 $x_i$ 连续选择了 t($t < x_i$) 次,只要存在下一次选择的不是 $x_i$,即可证明是平滑的。

假设 $t = x_i - 1$,此是第 i 个结点的当前权重为 $w_i = t * x_i - t * S = (x_i - 1) * x_i - (x_i - 1) * S$。证明下一轮的第 1 步执行完的值 $w_i + x_i$ 不是最大的即可。

$w_i + x_i => (x_i - 1) * x_i - (x_i - 1) * S + x_i =>$

$x_i^2 - x_i * S + S => (x_i - 1) * (x_i - S) + x_i$

因为 $x_i$ 恒小于 S,所以 $x_i - S <= -1$。 所以上面:

$(x_i - 1) * (x_i - S) + x_i <= (x_i - 1) * -1 + x_i = -x_i + 1 + x_i = 1$

所以第 t 轮后,再执行完第 1 步的值 $w_i + x_i <= 1$。

如果这 t 轮刚好是最开始的 t 轮,则必定存在另一个结点 j 的值为 $x_j * t$,所以有 $w_i + x_i <= 1 < 1 * t < x_j * t$。所以下一轮肯定不会选中 x。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

游戏化革命:未来商业模式的驱动力

游戏化革命:未来商业模式的驱动力

[美]盖布·兹彻曼、[美]乔斯琳·林德 / 应皓 / 中国人民大学出版社有限公司 / 2014-8-1 / CNY 59.00

第一本植入游戏化理念、实现APP互动的游戏化商业图书 游戏化与商业的大融合、游戏化驱动未来商业革命的权威之作 作者被公认为“游戏界的天才”,具有很高的知名度 亚马逊五星级图书 本书观点新颖,游戏化正成为最热门的商业新策略 游戏化是当今最热门的商业新策略,它能帮助龙头企业创造出前所未有的客户和员工的参与度。商业游戏化策略通过利用从游戏设计、忠诚度计划和行为经济学中所汲取......一起来看看 《游戏化革命:未来商业模式的驱动力》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具