【NLP】BERT中文实战踩坑

栏目: 编程工具 · 发布时间: 7年前

内容简介:终于用上了bert,踩了一些坑,和大家分享一下。我主要参考了奇点机智的文章,用bert做了两个中文任务:文本分类和相似度计算。这两个任务都是直接用封装好的run_classifer,py,另外两个没有仔细看,用到了再补充。Step1:写好自己的processor,照着例子写就可以,一定要

终于用上了bert,踩了一些坑,和大家分享一下。

我主要参考了奇点机智的文章,用bert做了两个中文任务:文本分类和相似度计算。这两个任务都是直接用封装好的run_classifer,py,另外两个没有仔细看,用到了再补充。

1. DataProcessor

Step1:写好自己的processor,照着例子写就可以,一定要 shuffle !!!

Step2:加到main函数的processors字典里

2. Early Stopping

Step1:建一个hook

early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook(
            estimator=estimator,
            metric_name='eval_loss',
            max_steps_without_decrease=FLAGS.max_steps_without_decrease,
            eval_dir=None,
            min_steps=0,
            run_every_secs=None,
            run_every_steps=FLAGS.save_checkpoints_steps)复制代码

Step2:加到estimator.train里

estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=[early_stopping_hook])复制代码

3. Train and Evaluate

需要用tensorboard查看训练曲线的话比较好

Step1:创建train和eval的spec,这里需要把early stopping的hook加到trainSpec

train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
                                                hooks=[early_stopping_hook])
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, throttle_secs=0)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)复制代码

4. Batch size

默认Eval和Predict的batch size都很小,记得改一下

<-未完待续->


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

智慧社会

智慧社会

阿莱克斯·彭特兰 (Alex Pentland) / 汪小帆、汪容 / 浙江人民出版社 / 2015-4 / CNY 56.90

●如果要在大数据领域推举出一个代表性的科学家,阿莱克斯·彭特兰是一个无法令人忽略的名字。经过数年极具开创性的研究,社会物理学这个全新科学领域的根基已足够深厚。社会物理学是关于想法流的科学,正是在想法流的帮助下,我们才得以提高集体智能,促进智慧社会的形成。 ● 通过研究数以百万计的人在智能手机、GPS设备、互联网等地方留下的“数字面包屑”,大数据的应用已成为一股无法被忽视的力量。在大数据的应用......一起来看看 《智慧社会》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具