【NLP】BERT中文实战踩坑

栏目: 编程工具 · 发布时间: 7年前

内容简介:终于用上了bert,踩了一些坑,和大家分享一下。我主要参考了奇点机智的文章,用bert做了两个中文任务:文本分类和相似度计算。这两个任务都是直接用封装好的run_classifer,py,另外两个没有仔细看,用到了再补充。Step1:写好自己的processor,照着例子写就可以,一定要

终于用上了bert,踩了一些坑,和大家分享一下。

我主要参考了奇点机智的文章,用bert做了两个中文任务:文本分类和相似度计算。这两个任务都是直接用封装好的run_classifer,py,另外两个没有仔细看,用到了再补充。

1. DataProcessor

Step1:写好自己的processor,照着例子写就可以,一定要 shuffle !!!

Step2:加到main函数的processors字典里

2. Early Stopping

Step1:建一个hook

early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook(
            estimator=estimator,
            metric_name='eval_loss',
            max_steps_without_decrease=FLAGS.max_steps_without_decrease,
            eval_dir=None,
            min_steps=0,
            run_every_secs=None,
            run_every_steps=FLAGS.save_checkpoints_steps)复制代码

Step2:加到estimator.train里

estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=[early_stopping_hook])复制代码

3. Train and Evaluate

需要用tensorboard查看训练曲线的话比较好

Step1:创建train和eval的spec,这里需要把early stopping的hook加到trainSpec

train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
                                                hooks=[early_stopping_hook])
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, throttle_secs=0)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)复制代码

4. Batch size

默认Eval和Predict的batch size都很小,记得改一下

<-未完待续->


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

UX设计之道

UX设计之道

[美]Russ Unger、[美]Carolyn Chandler / 陈军亮 / 人民邮电出版社 / 2015-4-1 / 49.00元

本书的目标是提供一些基本的工具及应用场景,帮助你及工作团队一起来使用这些工具和方法。正如你将在本书很多章节中看到的那样,我们没有尝试包罗万象、迎和所有的人,但我们试图给你提供一些用户体验(UX)设计师需要具备的核心信息和知识。除了我们自己的案例外,我们还提供了一些帮你了解如何开始准备基本材料的案例,让你可综合这些信息来创建某些更新、更好或者是更适合自己意图的东西。一起来看看 《UX设计之道》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具