产品经理能力方法论(一):数据分析

栏目: 数据库 · 发布时间: 6年前

内容简介:产品小白专属,10周线上特训,测、练、实战,22位导师全程带班,11项求职服务,保障就业!

产品小白专属,10周线上特训,测、练、实战,22位导师全程带班,11项求职服务,保障就业! 了解详情

释放双眼,带上耳机,听听看~!

00:00

00:00

产品经理的关键能力是:看得准、想得清楚、说得明白、做得快;而要成为更高阶的产品经理,还要有需求升维、全局视野、高阶学习思维技能。我将写一个系列文章,详细总结各个能力的方法论,相信对刚入门甚至3-5年的产品经理来说,能少走不少弯路。今天先说第一篇:数据分析。

产品经理能力方法论(一):数据分析

产品经理的关键能力是什么?

我很同意白鸦说的:看得准、想得清楚、说得明白、做得快;这是从结果论而言的。

从过程论来说,是具备这些关键能力:需求定义、数据分析、项目管理、决策沟通。这些方面功底扎实,可以是一个高执行力的产品经理。

而要成为更高阶的产品经理,还要有需求升维、全局视野、高阶学习思维技能。

我将写一个系列文章,详细总结各个能力的方法论。这些都是多年产品经历的血泪史,相信对刚入门甚至3-5年的产品经理来说,能少走不少弯路。

今天先说第一篇:数据分析。

老板:这个功能上线,效果怎么变差了,什么原因?

PM 内心:MMP,难道不是自然波动吗?

工作中经常需要数据分析,但有时原因真的很难找;或者就算觉得找到了,也难以用数据证明。有时找到了方向,取了一大堆数,算了半天,发现缺少某个维度的数据,又要重新求着数据部门要数据。找到了想要的数据,又恨自己数到用时Excel 技能少。

总之:一到数据分析要耗费不少时间。

不过没关系,今天3个步骤教大家高效的数据分析方法。其实,Excel 这些 工具 技巧真的没那么重要,数据分析困难和费时主要还是提炼思路的部分。这个部分想清楚了,自然就高效了。

步骤一:抛开预设结论,穷尽维度搜集数据

通常产品上线一周,会有一些关于上线效果的推测的结论。但在这一步,不要直接根据假设取数,而要搜集产品维度相关的所有数据。

我们往往会先依据预设假设去要数据。而一旦从数据中发现其他问题,又要再次要数据,从头分析,浪费时间。

举个具体的例子:

假设有个平台为用户提供接送机服务,有 X 和 Y 两个服务供应商在服务,这个平台有 D、E,2个渠道售卖这个服务。D 渠道又分为 D1、D2 、D3,3个子渠道,现在在D1、D2 上下线了 X 供应商。

一周后数据周报显示 D1、D2 的订单完成单减少,需要 PM 给出解释。

这里先解释下,接送机服务用户下单后,上车到达机场或目的地算订单完成。中间用户没有坐车,比如用户取消,或者没有司机接单导致订单取消,都算这个订单没有完成。

初始推测的假设是:D1、D2 下线 X 供应商,导致 Y 供应商下单增长,但是没有那么多司机接单,因而完成单减少。

那这个时候取数不能只去看 D1、D2 下线前后订单数、完成单数的变化。而是应该把D3、整个 D 渠道、E 渠道和平台渠道在前后的订单数、完成单数都取一遍。万一 D3 完成单也减少了呢?可能就是渠道的原因。

取数范围关注:

  • 变化如何:比较 D1、D2 的变化趋势、变化比例
  • 有变化和无变化的比较:D1、D2 VS D3, D VS E

取数逻辑关注:

  • Y 下单增长的渠道,完成单如何变化
  • Y 下单未增长甚至下降的渠道,完成单如何变化
  • Y 下单增长量大和小的渠道,完成单如何变化

步骤二:从初始数据中建立一些假设

关键词:假设

数据分析的核心是建立建设、验证假设。

所以其实不需要多么高深的数学或统计学知识,只要有最基本的假设检验的概念就可以了。(但如果要对数据分析有很好的宏观认知,还是要系统学一下统计学。我曾花过两整周学完统计学,只不过工作中很少用到除了假设检验外的其他知识。)

在步骤一中,你可能找到一些蛛丝马迹似乎能论证结论。例如你发现了某个数据变化的同时结论数据也变化了。但是要记住这个线索只是假设,不要立刻当成结论。否则的话很可能会在后面被新出现的证据推翻。

在这一步中,把发现的线索当作假设,然后应该思考怎么进一步去论证,需要哪些进一步的数据。

步骤三:进一步搜集数据,论证假设

1. 是自然下降/上升吗?

出现数据问题,可以先评估是自然波动吗?

假设步骤一中的案例,渠道 E 中 X 供应商在某个周末下单数增加。它的应单率减少。应单率指的是在用户下的订单中,司机接单的数量。

提出假设:X 下单数增加导致司机运力不足,从而应单率减少。

但首先可以评估是否自然波动。例如是否只要周末 X 的应单率就会下降。可以对比之前周末的数据。

2. 有可能是整体性因素吗?

排除了自然波动,看一下是否有整体性因素?

例如那周末暴雨,导致航班变化、取消比较多。因而订单自动取消了。而这个因素不仅仅影响 X 供应商,也会影响 Y 供应商。那么可以看 Y 供应商的应单率是否也下降了。

3. 是假设导致的吗?

排除了以上2种情况,就要开始论证假设;假设论证一般是因果关系的论证。

1) 单一因果关系

即A导致B,这一论证除了去看出现 A 是否出现 B,还要看:

  • 出现 A 是否有非 B
  • 未出现 A 是否一定是非 B 是否有 B
  • 有 B 的情况是否一定是 A,是否有非 A
  • 非 B 的情况是否有 A,是否是非 A例如,要论证 A 的增长引起了 B 的增长,通常需要看
  • 有 A 增长时,B是否增长
  • A 不变或下降时,B 是否不变或下降
  • A 增长幅度大或小时,B 增长幅度是否大或小
  • 以及反面的情况

如果只能看到 A 和 B 的数据,没有非 A 或非 B 的数据怎么办呢?

例如我们在接送机的列表页新上了一个返现报价的产品。但是购买返现产品的用户比较少。由于返现产品原价高会被价格低的普通产品挤下去,导致有些情况用户在第一屏看不到返现报价。

我们推测返现整体露出少(A)所以效果差(B),但除了做 AB 测试再定义个逻辑,我们不可能找到整体返现露出多的情况。

这个时候,可以看 子维度

  • 看子维度,且不要只看一个子维度,穷尽子维度是否能得出假设。
  • 看子维度的子维度。看子维度是否能再分也能提供信息。

不同车型(经济型、舒适型、豪华型等)都有返现,有些车型普通产品少,返现产品露出多,返现露出多的车型效果是否更好?

还有一个子维度是城市,有些城市的普通产品也比其他城市少。不同城市的不同车型露出不同,该城市该车型露出多,该城市该车型是否效果好?等等。

2)因果链条

有时,一件事不能很直接找到原因,而是有一个长的因果链。那应该找出因果链每一环,定义测量指标,对每一环论证。

例如步骤一里的案例实际是个因果链。

Y 供应商下单增长(指标:下单数) -> 导致司机运力不足(指标:应单率=接单数/下单数) -> 接不起(指标:完成单率=完成单数/接单数)

除了看下单数和完成单数,还要关注应单率的变化。

这一步骤中会有一个问题:有些数据比较难找。此时可以 进行估算

例如:评估产品露出对返现影响那个项目时,需要看不同城市的露出率。由于接送机需要用户先输入时间地址,再根据用户选择的区域展示该区域的产品。有些区域有返现露出,有些没有。前端很难记录多少概率下该城市返现是露出的。

于是我就想:如果知道一个城市的热门区域地址,将它们一个个输入查看,记录是否露出,不就能估算该城市的返现露出率了吗?

那怎么知道一个城市热门区域有哪些呢?

我打开携程酒店,上面就有城市热门区域嘛~接送机的客户一般都是旅游或出差,所以酒店入住的热门区域也差不多是接送机用户地址的热门区域。

步骤四:得出结论

完美。

本文由 @Tara 原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自 Unsplash,基于CC0协议。

产品经理能力方法论(一):数据分析


以上所述就是小编给大家介绍的《产品经理能力方法论(一):数据分析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法之美

算法之美

左飞 / 电子工业出版社 / 2016-3 / 79.00元

《算法之美——隐匿在数据结构背后的原理(C++版)》围绕算法与数据结构这个话题,循序渐进、深入浅出地介绍了现代计算机技术中常用的40 余个经典算法,以及回溯法、分治法、贪婪法和动态规划等算法设计思想。在此过程中,《算法之美——隐匿在数据结构背后的原理(C++版)》也系统地讲解了链表(包括单向链表、单向循环链表和双向循环链表)、栈、队列(包括普通队列和优先级队列)、树(包括二叉树、哈夫曼树、堆、红黑......一起来看看 《算法之美》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具