PageRank 算法随记

栏目: 后端 · 发布时间: 7年前

内容简介:递归的意思是:假如现在要求C,指向C的入链只有B,那么得先求B的重要度,B重要度的大小取决于指向B的入链以及这些入链的重要度。“随机”的解释:从i这个页面开始,它可能有di种选择,而且他做每一种选择的时候,选择的概率是相同的,即他决定到下一个页面是一个随机的选择(应该跳到那个页面),我们把上面图中的矩阵叫随机邻接矩阵。Σri=1在这里表示限定条件,和流方程一样,不加限定条件会有无穷多个解。所以这里的限定条件是假定所有网页的重要度求和等于1。

递归的意思是:假如现在要求C,指向C的入链只有B,那么得先求B的重要度,B重要度的大小取决于指向B的入链以及这些入链的重要度。

PageRank 算法随记
PageRank 算法随记

“随机”的解释:从i这个页面开始,它可能有di种选择,而且他做每一种选择的时候,选择的概率是相同的,即他决定到下一个页面是一个随机的选择(应该跳到那个页面),我们把上面图中的矩阵叫随机邻接矩阵。

矩阵方程

PageRank 算法随记

Σri=1在这里表示限定条件,和流方程一样,不加限定条件会有无穷多个解。所以这里的限定条件是假定所有网页的重要度求和等于1。

PageRank 算法随记

矩阵的行和r向量相乘的时候就是对流公式的表示。

矩阵方程实例

PageRank 算法随记

幂迭代方法

PageRank 算法随记

两个向量的1范数,其实是对应位置的差值绝对值之和。

r向量是所有网页的重要程度组成的向量。

幂迭代求解

PageRank 算法随记

总共是3个节点,初始化每个节点的重要度分别是1/3。

r=r'的意思是,最后求得r'的值趋于稳定,不再变化。

随机游动的解释

PageRank 算法随记

如果有很多页面指向页面j的话,那么它的重要度是很高的。

平稳分布

PageRank 算法随记

存在性和唯一性

PageRank 算法随记

在节点少的图中,如果新增一个节点的话,整个图是需要重新算的。但是在亿级节点的话,多一个节点少一个节点,对图的影响不一定大。像百度和谷歌就不会频繁的去计算。

按照流公式迭代不一定会收敛到我们想要的结果。

收不收敛?

PageRank 算法随记

a,b节点图,如果用1,0去初始化的话,会发现他们一直再对调。

ABCD图,所有的权重最后都归到了C这一个点。

PageRank 算法随记

随着矩阵运算的迭代,拿到的ABCD四个值都会非常非常趋于零。

PageRank问题

PageRank 算法随记
PageRank 算法随记

m这个点就是个陷阱问题,最终所有的权重都被吸到m这个点上。

PageRank 算法随记

终结者问题,最后的迭代结果是零零零,m这个点没有任何出链。

解决办法:随机传送

PageRank 算法随记

e代表全部的网页,就是说浏览者会随机的在全部网页中打开一个。

pagerank是一个针对图的算法,有名是因为,最早的时候谷歌用它做了一个所谓比较公正的网络排序,但后来人们对他做了各种优化,争取通过他的规则,把自己的网页提高比较靠前的位置,也通过优化来使结果更加的稳定。

pagerank可以帮你在有关联的图中找到最重要的节点。


以上所述就是小编给大家介绍的《PageRank 算法随记》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网络素养

网络素养

[美]霍华德·莱茵戈德 / 张子凌、老卡 / 译言·东西文库/电子工业出版社 / 2013-8-1 / 49.80元

有人说Google让我们变得更笨,有人说Facebook出卖了我们的隐私,有人说Twitter将我们的注意力碎片化。在你担忧这些社会化媒体让我们变得“浅薄”的时候,有没问过自己,是否真正地掌握了使用社会化媒体的方式? 这本书将介绍五种正在改变我 们这个世界的素养:注意力、 对垃圾信息的识别能力、参与力、协作力和联网智慧。当有足够多的人学会并且能够熟练的使用这些技术,成为真正的数字公民后。健康......一起来看看 《网络素养》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

SHA 加密
SHA 加密

SHA 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具