Golang 源码剖析:fmt 标准库 --- Print* 是怎么样输出的?

栏目: Go · 发布时间: 5年前

内容简介:原文地址:标准开场见多了,那内部标准库又是怎么输出这段英文的呢?今天一起来围观下源码吧以上三类就是最常见的格式化 I/O 的方法,我们将基于此去进行拆解描述

Golang 源码剖析:fmt 标准库 --- Print* 是怎么样输出的?

原文地址: Golang 源码剖析:fmt 标准库

前言

package main

import (
    "fmt"
)

func main() {
    fmt.Println("Hello World!")
}

标准开场见多了,那内部标准库又是怎么输出这段英文的呢?今天一起来围观下源码吧

原型

func Print(a ...interface{}) (n int, err error) {
    return Fprint(os.Stdout, a...)
}

func Println(a ...interface{}) (n int, err error) {
    return Fprintln(os.Stdout, a...)
}

func Printf(format string, a ...interface{}) (n int, err error) {
    return Fprintf(os.Stdout, format, a...)
}
  • Print:使用默认格式说明符打印格式并写入标准输出。当两者都不是字符串时,在操作数之间添加空格
  • Println:同上,不同的地方是始终在操作数之间添加空格,并附加换行符
  • Printf:根据格式说明符进行格式化并写入标准输出

以上三类就是最常见的格式化 I/O 的方法,我们将基于此去进行拆解描述

执行流程

案例一:Print

在这里我们使用 Print 方法做一个分析,便于后面的加深理解 :smile:

func Print(a ...interface{}) (n int, err error) {
    return Fprint(os.Stdout, a...)
}

Print 使用默认格式说明符打印格式并写入标准输出。另外当两者都为非空字符串时将插入一个空格

原型

func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
    p := newPrinter()
    p.doPrint(a)
    n, err = w.Write(p.buf)
    p.free()
    return
}

该函数一共有两个形参:

  • w:输出流,只要实现 io.Writer 就可以(抽象)为流的写入
  • a:任意类型的多个值

分析主干流程

1、 p := newPrinter(): 申请一个临时对象池(sync.Pool)

var ppFree = sync.Pool{
    New: func() interface{} { return new(pp) },
}

func newPrinter() *pp {
    p := ppFree.Get().(*pp)
    p.panicking = false
    p.erroring = false
    p.fmt.init(&p.buf)
    return p
}
  • ppFree.Get():基于 sync.Pool 实现 *pp 的临时对象池,每次获取一定会返回一个新的 pp 对象用于接下来的处理
  • *pp.panicking:用于解决无限递归的 panic、recover 问题,会根据该参数在 catchPanic 及时掐断
  • *pp.erroring:用于表示正在处理错误无效的 verb 标识符,主要作用是防止调用 handleMethods 方法
  • *pp.fmt.init(&p.buf):初始化 fmt 配置,会设置 buf 并且清空 fmtFlags 标志位

2、 p.doPrint(a): 执行约定的格式化动作(参数间增加一个空格、最后一个参数增加换行符)

func (p *pp) doPrint(a []interface{}) {
    prevString := false
    for argNum, arg := range a {
        true && false
        isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
        // Add a space between two non-string arguments.
        if argNum > 0 && !isString && !prevString {
            p.buf.WriteByte(' ')
        }
        p.printArg(arg, 'v')
        prevString = isString
    }
}

可以看到底层通过判断该入参, 同时 满足以下条件就会添加分隔符(空格):

  • 当前入参为多个参数(例如:Slice)
  • 当前入参不为 nil 且不为字符串(通过反射确定)
  • 当前入参不为首项或上一个入参不为字符串

而在 Print 方法中,不需要指定格式符。实际上在该方法内直接指定为 v 。也就是默认格式的值

p.printArg(arg, 'v')
  1. w.Write(p.buf): 写入标准输出(io.Writer)
  2. *pp.free(): 释放已缓存的内容。在使用完临时对象后,会将 buf、arg、value 清空再重新存放到 ppFree 中。以便于后面再取出重用(利用 sync.Pool 的临时对象特性)

案例二:Printf

标识符

Verbs

%v    the value in a default format
    when printing structs, the plus flag (%+v) adds field names
%#v    a Go-syntax representation of the value
%T    a Go-syntax representation of the type of the value
%%    a literal percent sign; consumes no value
%t    the word true or false

Flags

+    always print a sign for numeric values;
    guarantee ASCII-only output for %q (%+q)
-    pad with spaces on the right rather than the left (left-justify the field)
#    alternate format: add leading 0 for octal (%#o), 0x for hex (%#x);
    0X for hex (%#X); suppress 0x for %p (%#p);
    for %q, print a raw (backquoted) string if strconv.CanBackquote
    returns true;
    always print a decimal point for %e, %E, %f, %F, %g and %G;
    do not remove trailing zeros for %g and %G;
    write e.g. U+0078 'x' if the character is printable for %U (%#U).
' '    (space) leave a space for elided sign in numbers (% d);
    put spaces between bytes printing strings or slices in hex (% x, % X)
0    pad with leading zeros rather than spaces;
    for numbers, this moves the padding after the sign

详细建议参见 Godoc

原型

func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
    p := newPrinter()
    p.doPrintf(format, a)
    n, err = w.Write(p.buf)
    p.free()
    return
}

与 Print 相比,最大的不同就是 doPrintf 方法了。在这里我们来详细看看其代码,如下:

func (p *pp) doPrintf(format string, a []interface{}) {
    end := len(format)
    argNum := 0         // we process one argument per non-trivial format
    afterIndex := false // previous item in format was an index like [3].
    p.reordered = false
formatLoop:
    for i := 0; i < end; {
        p.goodArgNum = true
        lasti := i
        for i < end && format[i] != '%' {
            i++
        }
        if i > lasti {
            p.buf.WriteString(format[lasti:i])
        }
        if i >= end {
            // done processing format string
            break
        }

        // Process one verb
        i++

        // Do we have flags?
        p.fmt.clearflags()
    simpleFormat:
        for ; i < end; i++ {
            c := format[i]
            switch c {
            case '#':   //'#'、'0'、'+'、'-'、' '
                ...
            default:
                if 'a' <= c && c <= 'z' && argNum < len(a) {
                    ...
                    p.printArg(a[argNum], rune(c))
                    argNum++
                    i++
                    continue formatLoop
                }
                
                break simpleFormat
            }
        }

        // Do we have an explicit argument index?
        argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))

        // Do we have width?
        if i < end && format[i] == '*' {
            ...
        }

        // Do we have precision?
        if i+1 < end && format[i] == '.' {
            ...
        }

        if !afterIndex {
            argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
        }

        if i >= end {
            p.buf.WriteString(noVerbString)
            break
        }

        ...

        switch {
        case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec.
            p.buf.WriteByte('%')
        case !p.goodArgNum:
            p.badArgNum(verb)
        case argNum >= len(a): // No argument left over to print for the current verb.
            p.missingArg(verb)
        case verb == 'v':
            ...
            fallthrough
        default:
            p.printArg(a[argNum], verb)
            argNum++
        }
    }

    if !p.reordered && argNum < len(a) {
        ...
    }
}

分析主干流程

  1. 写入 % 之前的字符内容
  2. 如果所有标志位处理完毕(到达字符尾部),则跳出处理逻辑
  3. (往后移)跳过 % ,开始处理其他 verb 标志位
  4. 清空(重新初始化) fmt 配置
  5. 处理一些基础的 verb 标识符(simpleFormat)。如:'#'、'0'、'+'、'-'、' ' 以及 简单的 verbs 标识符(不包含精度、宽度和参数索引)。需要注意的是,若当前字符为简单 verb 标识符。则直接进行处理。完成后会直接后移到下一个字符 。其余标志位则变更 fmt 配置项,便于后续处理
  6. 处理参数索引(argument index)
  7. 处理参数宽度(width)
  8. 处理参数精度(precision)
  9. % 之后若不存在 verbs 标识符则返回 noVerbString 。值为 %!(NOVERB)
  10. 处理特殊 verbs 标识符(如:'%%'、'%#v'、'%+v')、错误情况(如:参数索引指定错误、参数集个数与 verbs 标识符数量不匹配)或进行格式化参数集
  11. 常规流程处理完毕

在特殊情况下,若提供的参数集比 verb 标识符多。fmt 将会贪婪检查下去,将多出的参数集以特定的格式输出,如下:

fmt.Printf("%d", 1, 2, 3)
// 1%!(EXTRA int=2, int=3)
  • 约定前缀额外标志:%!(EXTRA
  • 当前参数的类型
  • 约定格式符:=
  • 当前参数的值(默认以 %v 格式化)
  • 约定格式符:)

值得注意的是,当指定了参数索引或实际处理的参数小于入参的参数集时,就不会进行贪婪匹配来展示

案例三:Println

原型

func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
    p := newPrinter()
    p.doPrintln(a)
    n, err = w.Write(p.buf)
    p.free()
    return
}

在这个方法中,最大的区别就是 doPrintln,我们一起来看看,如下:

func (p *pp) doPrintln(a []interface{}) {
    for argNum, arg := range a {
        if argNum > 0 {
            p.buf.WriteByte(' ')
        }
        p.printArg(arg, 'v')
    }
    p.buf.WriteByte('\n')
}

分析主干流程

%v
\n

如何格式化参数

在上例的执行流程分析中,可以看到格式化参数这一步是在 p.printArg(arg, verb) 执行的,我们一起来看看它都做了些什么?

func (p *pp) printArg(arg interface{}, verb rune) {
    p.arg = arg
    p.value = reflect.Value{}

    if arg == nil {
        switch verb {
        case 'T', 'v':
            p.fmt.padString(nilAngleString)
        default:
            p.badVerb(verb)
        }
        return
    }

    switch verb {
    case 'T':
        p.fmt.fmt_s(reflect.TypeOf(arg).String())
        return
    case 'p':
        p.fmtPointer(reflect.ValueOf(arg), 'p')
        return
    }

    // Some types can be done without reflection.
    switch f := arg.(type) {
    case bool:
        p.fmtBool(f, verb)
    case float32:
        p.fmtFloat(float64(f), 32, verb)
    ...
    case reflect.Value:
        if f.IsValid() && f.CanInterface() {
            p.arg = f.Interface()
            if p.handleMethods(verb) {
                return
            }
        }
        p.printValue(f, verb, 0)
    default:
        if !p.handleMethods(verb) {
            p.printValue(reflect.ValueOf(f), verb, 0)
        }
    }
}

在小节代码中可以看见,fmt 本身对不同的类型做了不同的处理。这样子就避免了通过反射确定。相对的提高了性能

其中有两个特殊的方法,分别是 handleMethodsbadVerb ,接下来分别来看看他们的作用是什么

1、badVerb

它主要用于格式化并处理错误的行为。我们可以一起来看看,代码如下:

func (p *pp) badVerb(verb rune) {
    p.erroring = true
    p.buf.WriteString(percentBangString)
    p.buf.WriteRune(verb)
    p.buf.WriteByte('(')
    switch {
    case p.arg != nil:
        p.buf.WriteString(reflect.TypeOf(p.arg).String())
        p.buf.WriteByte('=')
        p.printArg(p.arg, 'v')
    ...
    default:
        p.buf.WriteString(nilAngleString)
    }
    p.buf.WriteByte(')')
    p.erroring = false
}

在处理错误格式化时,我们可以对比以下例子:

fmt.Printf("%s", []int64{1, 2, 3})
// [%!s(int64=1) %!s(int64=2) %!s(int64=3)]%

在 badVerb 中可以看到错误字符串的处理主要分为以下部分:

  • 约定前缀错误标志:%!
  • 当前的格式化操作符
  • 约定格式符:(
  • 当前参数的类型
  • 约定格式符:=
  • 当前参数的值(默认以 %v 格式化)
  • 约定格式符:)

2、handleMethods

func (p *pp) handleMethods(verb rune) (handled bool) {
    if p.erroring {
        return
    }
    // Is it a Formatter?
    if formatter, ok := p.arg.(Formatter); ok {
        handled = true
        defer p.catchPanic(p.arg, verb)
        formatter.Format(p, verb)
        return
    }

    // If we're doing Go syntax and the argument knows how to supply it, take care of it now.
    ...
    
    return false
}

这个方法比较特殊,一般在自定义结构体和未知情况下进行调用。主要流程是:

  • 若当前参数为错误 verb 标识符,则直接返回
  • 判断是否实现了 Formatter
  • 实现,则利用自定义 Formatter 格式化参数
  • 未实现,则最大程度的利用 Go syntax 默认规则去格式化参数

拓展

在 fmt 标准库中可以通过自定义结构体来实现方法的自定义,大致如下几种

fmt.State

type State interface {
    Write(b []byte) (n int, err error)

    Width() (wid int, ok bool)

    Precision() (prec int, ok bool)

    Flag(c int) bool
}

State 用于获取标志位的状态值,涉及如下:

  • Write:将格式化完毕的字符写入缓冲区中,等待下一步处理
  • Width:返回宽度信息和是否被设置
  • Precision:返回精度信息和是否被设置
  • Flag:返回特殊标志符('#'、'0'、'+'、'-'、' ')是否被设置

fmt.Formatter

type Formatter interface {
    Format(f State, c rune)
}

Formatter 用于实现 自定义格式化方法 。可通过在自定义结构体中实现 Format 方法来实现这个目的

另外,可以通过 f 获取到当前标识符的宽度、精度等状态值。c 为 verb 标识符,可以得到其动作是什么

fmt.Stringer

type Stringer interface {
    String() string
}

当该对象为 String、Array、Slice 等类型时,将会调用 String() 方法对类字符串进行格式化

fmt.GoStringer

type GoStringer interface {
    GoString() string
}

当格式化特定 verb 标识符(%v)时,将调用 GoString() 方法对其进行格式化

总结

通过本文对 fmt 标准库的分析,可以发现它有以下特点:

  • 在拓展性方面,可以自定义格式化方法等
  • 在完整度方面,尽可能的贪婪匹配,输出参数集
  • 在性能方面,每种不同的参数类型,都实现了不同的格式化处理操作
  • 在性能方面,尽可能的最短匹配,格式化参数集

总的来说,fmt 标准库有许多值得推敲的细节,希望你能够在本文学到 :smile:

原文地址: Golang 源码剖析:fmt 标准库


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

代码之美

代码之美

Grey Wilson / 聂雪军 / 机械工业出版社 / 2008年09月 / 99.00元

《代码之美》介绍了人类在一个奋斗领域中的创造性和灵活性:计算机系统的开发领域。在每章中的漂亮代码都是来自独特解决方案的发现,而这种发现是来源于作者超越既定边界的远见卓识,并且识别出被多数人忽视的需求以及找出令人叹为观止的问题解决方案。 《代码之美》33章,有38位作者,每位作者贡献一章。每位作者都将自己心目中对于“美丽的代码”的认识浓缩在一章当中,张力十足。38位大牛,每个人对代码之美都有自......一起来看看 《代码之美》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

MD5 加密
MD5 加密

MD5 加密工具