负载均衡算法 — 轮询

栏目: 服务器 · 发布时间: 5年前

内容简介:在分布式系统中,为了实现负载均衡,必然会涉及到负载调度算法,如 Nginx 和 RPC 服务发现等场景。常见的负载均衡算法有3 种常见的轮询调度算法,分别为、、

在分布式系统中,为了实现负载均衡,必然会涉及到负载调度算法,如 Nginx 和 RPC 服务发现等场景。常见的负载均衡算法有 轮询源地址 Hash最少连接数 ,而 轮询 是最简单且应用最广的算法。

负载均衡算法 — 轮询

3 种常见的轮询调度算法,分别为、、 平滑加权轮询 。本文将用如下 4 个服务,来详细说明轮询调度过程。

服务实例 权重值
192.168.10.1:2202 1
192.168.10.2:2202 2
192.168.10.3:2202 3
192.168.10.4:2202 4

简单轮询

简单轮询是轮询算法中最简单的一种,但由于它不支持配置负载,所以应用较少。

算法描述

假设有 N 台实例 S = {S1, S2, …, Sn},指示变量 currentPos 表示当前选择的实例 ID,初始化为 -1。算法可以描述为:

1、请求到来时,自加变量 currentPos,使其指向下一个实例;

2、若所有实例已被 调度 过一次(上一次调度时 currentPos 指向了最后一个实例),则重置为 0;

调度过程,如下:

请求 currentPos 选中的实例
1 0 192.168.10.1:2202
2 1 192.168.10.2:2202
3 2 192.168.10.3:2202
4 3 192.168.10.4:2202
5 0 192.168.10.1:2202

代码实现

这里使用 PHP 来实现,源码见 fan-haobai/load-balance 部分。

首先,定义一个统一的操作接口,主要有 init()next() 这 2 个方法。

interface RobinInterface
{
    /**
     * 初始化服务权重
     *
     * @param array $services
     *
     * @return mixed
     */
    public function init(array $services);

    /**
     * 获取一个服务
     *
     * @return mixed
     */
    public function next();

}

然后,根据简单轮询算法思路,实现上述接口:

class Robin implements RobinInterface
{
    private $services = array();

    private $total;

    private $currentPos = -1;

    public function init(array $services)
    {
        $this->services = $services;
        $this->total = count($services);
    }

    public function next()
    {
        // 已调度完一圈,重置currentPos值为第一个实例位置
        $this->currentPos = ($this->currentPos + 1) % $this->total;

        return $this->services[$this->currentPos];
    }

}

其中, total 为总实例数量, services 为服务实例列表。由于简单轮询不需要配置权重,因此可简单配置为:

$services = [
    '192.168.10.1:2202',
    '192.168.10.2:2202',
    '192.168.10.3:2202',
    '192.168.10.4:2202',
];

优缺点分析

在实际应用中,同一个服务会部署到不同的硬件环境,会出现性能不同的情况。若直接使用简单轮询调度算法,给每个服务实例相同的负载,那么,必然会出现资源浪费的情况。因此为了避免这种情况,一些人就提出了下面的算法。

加权轮询

加权轮询算法引入了“权”值,改进了简单轮询算法,可以根据硬件性能配置实例负载的权重,从而达到资源的合理利用。

算法描述

假设有 N 台实例 S = {S1, S2, …, Sn},权重 W = {W1, W2, …, Wn},指示变量 currentPos 表示当前选择的实例 ID,初始化为 -1;变量 currentWeight 表示当前权重,初始值为 max(S);max(S) 表示 N 台实例的最大权重值,gcd(S) 表示 N 台实例权重的最大公约数。

算法可以描述为:

1、请求到来时,i 从 currentPos 起自加,遍历每个实例;

2、若所有实例已被遍历过一次(上一次遍历时 i 指向了最后一个实例),则重置 i 为 0;且 currentWeight 减小为 currentWeight - gcd(S),若 currentWeight 小于或等于 0,则重置为 max(S);

3、 直到 i 指向的实例的权重大于或等于 currentWeight,赋值 currentPos 为 i;

例如,上述 4 个服务,最大权重 max(S) 为 4,最大公约数 gcd(S) 为 1。其调度过程如下:

请求 currentPos currentWeight 选中的实例
1 3 4 192.168.10.4:2202
2 2 3 192.168.10.3:2202
3 3 3 192.168.10.4:2202
4 1 2 192.168.10.2:2202
….
9 2 1 192.168.10.3:2202
10 3 4 192.168.10.4:2202

代码实现

这里使用 PHP 来实现,源码见 fan-haobai/load-balance 部分。

class WeightRobin implements RobinInterface
{
    private $services = array();

    private $total;

    private $currentPos = -1;

    private $currentWeight;

    public function init(array $services)
    {
        foreach ($services as $ip => $weight) {
            $this->services[] = [
                'ip'     => $ip,
                'weight' => $weight,
            ];
        }

        $this->total = count($this->services);
    }

    public function next()
    {
        $i = $this->currentPos;
        while (true) {
            $i = ($i + 1) % $this->total;

            // 已全部被遍历完一次
            if (0 === $i) {
                // 减currentWeight
                $this->currentWeight -= $this->getGcd();

                // 赋值currentWeight为0,回归到初始状态
                if ($this->currentWeight <= 0) {
                    $this->currentWeight = $this->getMaxWeight();
                }
            }

            // 直到当前遍历实例的weight大于或等于currentWeight
            if ($this->services[$i]['weight'] >= $this->currentWeight) {
                $this->currentPos = $i;

                return $this->services[$this->currentPos]['ip'];
            }
        }
    }

其中, getMaxWeight() 为所有实例的最大权重值; getGcd() 为所有实例权重的最大公约数,主要是通过 gcd() 方法(可用 gmp_gcd() 函数)求得 2 个数的最大公约数,然后求每一个实例的权重与当前最大公约数的最大公约数。实现如下:

private function getGcd()
{
    $gcd = $this->services[0]['weight'];

    for ($i = 0; $i < $this->total; $i++) {
        $gcd = $this->gcd($gcd, $this->services[$i]['weight']);
    }

    return $gcd;
}

需要注意的是,在配置 services 服务列表时,需要指定其权重:

$services = [
    '192.168.10.1:2202' => 1,
    '192.168.10.2:2202' => 2,
    '192.168.10.3:2202' => 3,
    '192.168.10.4:2202' => 4,
];

优缺点分析

算法虽然通过配置实例权重,解决了的资源利用问题,但是它还是存在一个比较明显的 缺陷 。例如:

服务实例 S = {a, b, c},权重 W = {5, 1, 1},使用加权轮询调度生成的实例序列为 {a, a, a, a, a, b, c},那么就会存在连续 5 个请求都被调度到实例 a。而实际中,这种不均匀的负载是不被允许的,因为连续请求会突然加重实例 a 的负载,可能会导致严重的事故。

为了解决加权轮询调度不均匀的缺陷,一些人提出了 平滑加权轮询 调度算法,它会生成的更均匀的调度序列 {a, a, b, a, c, a, a}。对于神秘的平滑加权轮询算法,我将在后续文章中详细介绍它的原理和实现。

总结

轮询算法是最简单的调度算法,因为它无需记录当前所有连接的状态,所以它是一种 无状态 的调度算法,这些特性使得它应用较广。

轮询调度算法并不能动态感知每个实例的负载,它完全依赖于我们的工程经验,人为配置权重来实现基本的负载均衡,并不能保证服务的高可用性。若服务的某些实例因其他原因负载突然加重,轮询调度还是会一如既往地分配请求给这个实例,因此可能会形成小面积的宕机,导致服务的局部不可用。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Filter Bubble

The Filter Bubble

Eli Pariser / Penguin Press / 2011-5-12 / GBP 16.45

In December 2009, Google began customizing its search results for each user. Instead of giving you the most broadly popular result, Google now tries to predict what you are most likely to click on. Ac......一起来看看 《The Filter Bubble》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具