内容简介:本文为 AI 研习社编译的技术博客,原标题 :Classifying Artwork Images Kaggle Competition
本文为 AI 研习社编译的技术博客,原标题 :
Classifying Artwork Images Kaggle Competition
作者 | Terrance Whitehurst
翻译 | M惠M
校对 | 酱番梨 整理 | 菠萝妹
原文链接:
https://medium.com/@TerranceWhitehurst/classifying-artwork-images-kaggle-competition-8b3a98b4a341
源代码!
https://github.com/Terrance-Whitehurst/Keras-Art-Images-Classification/blob/master/Keras%20Artwork%20Classification.ipynb
在这个项目中,我将使用迁移学习和深度学习框架Keras对kaggle数据集中的不同艺术作品图像进行分类。
你将学到什么!
-
使用keras库进行分类任务
-
使用keras进行迁移学习
-
数据增强
我们开始吧!
#1
首先导入所有的依赖项。
#2
加载了训练和验证集以及艺术图像的类别。
还设置了一些hyper参数,以便在培训和加载模型时使用。
#3
按类别将训练图像进行可视化。
#4
将来自不同类的一些图像进行可视化。
#5
使用for循环创建训练数据和测试数据。
#6
定义函数来加载数据集。
#7
使用keras的“ImageDataGenerator()”来增强数据。然后将训练数据与扩充相匹配。
#8
这是最终模型。它是一个两层网络,有两个密集的层和一个输出层。在我们完成模型架构之后,我们还必须在培训之前编译模型。
#9
这使用数据增强创建一个生成器。接下来调用“fit_generator()”来训练模型,并添加“history”,这样就可以可视化之后的训练。
#10
使用在“fit_generator()”之前调用的“history”来查看各个时代的损失和准确性。
#11
创建一个测试集来获得预测
#12
调用“predict()”来获得预测,然后创建一个分类报告和混淆矩阵,以查看模型做得有多好! 雷锋网
#13
使用“plot_model()”来获得模型架构的图像,我将在下面显示。
结论
下面是我在这个项目中使用的可视化模型
学习快乐!
想要继续查看该篇文章相关链接和参考文献?
长按链接点击打开或点击【 有关艺术画作分类的 Kaggle 比赛经验分享 】:
https://ai.yanxishe.com/page/TextTranslation/1283
AI研习社每日更新精彩内容,观看更多精彩内容: 雷锋网
这5种计算机视觉技术,刷新你的世界观
迁移学习:如何将预训练CNN当成特征提取器
新手必看:深度学习是什么?它的工作原理是什么?
Python高级技巧:用一行代码减少一半内存占用
等你来译: 雷锋网 (公众号:雷锋网)
预训练模型及其应用
一文带你读懂线性分类器
(Python)3D人脸处理工具face3d
让你的电脑拥有“视力”,用卷积神经网络就可以!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 卖了43.2万美元的AI画作,其实是借鉴程序员代码的“山寨货”?
- Leetcode 第126场比赛回顾
- Leetcode 第127场比赛回顾
- Leetcode 第94场比赛回顾
- Leetcode 第133场比赛回顾
- Leetcode第134场比赛回顾
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
The Filter Bubble
Eli Pariser / Penguin Press / 2011-5-12 / GBP 16.45
In December 2009, Google began customizing its search results for each user. Instead of giving you the most broadly popular result, Google now tries to predict what you are most likely to click on. Ac......一起来看看 《The Filter Bubble》 这本书的介绍吧!
CSS 压缩/解压工具
在线压缩/解压 CSS 代码
随机密码生成器
多种字符组合密码