Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

栏目: Python · 发布时间: 6年前

内容简介:版权声明:本文为博主原创文章,采用知识共享 署名-非商业性使用-相同方式共享 4.0 国际 许可协议进行许可。 https://blog.csdn.net/lovecluo/article/details/84776527

版权声明:本文为博主原创文章,采用知识共享 署名-非商业性使用-相同方式共享 4.0 国际 许可协议进行许可。 https://blog.csdn.net/lovecluo/article/details/84776527

本文首发于 CSDN 微信 (ID:CSDNNews)

作者 | 罗昭成

责编 | 唐小引

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物? 五年前,《奇葩说》在爱奇艺开始播出,第一次将辩论赛引入了综艺节目。虽然专业性很强,但他们努力去凸显自己与众不同的个性,展现出自己“奇葩”的一面。每一个辩题,最后结果并不表示官方的意见,而是希望大家在看到节目过后,能够让观众朋友们思考一些以前没有考虑过的问题,让观众朋友们看到世界的多元性,而笔者作为一个日常与代码为伍的程序员,在家中写代码之时也总喜欢一边播放着。

经过 5 年的发展,奇葩说已经更新到了第五季,这一季,节目内容还是很精彩。但是很多辩论的时候,“耍无赖”好像比讲道理更能赢得观众的喜爱。生活不止有眼前苟且,还有诗和远方。节目组应该没有去干扰比赛结果,但是笔者不喜欢“耍无赖”就这么赢得比赛,因为他对“老实人”不公平。在笔者的眼中,奇葩说变了,不再是我喜欢的那个奇葩说了(以上,仅为作者个人观点)。

不管如何,奇葩说还是很精彩,每一个辩题,都值得去深入思考。在奇葩说第五季即将完结之际,笔者突发奇想,作为程序员,是不是可以换一种角度来看奇葩说?在本文中,笔者以技术手段对奇葩说官方数据进行了分析,希望能够有一点帮助。

爬取数据

奇葩说是爱奇艺独播视频,所以这一次,笔者选取官方评论数据作为资源库,来进行数据分析。

使用 Chrome 查看源代码模式,在“奇葩说”播放页面往下面滑动,有一个 get_comments 的请求,经过分析,这个接口就是获取评论数据的接口。

看一下接口地址和请求参数:

接口地址:
http://sns-comment.iqiyi.com/v3/comment/get_comments.action

参数:
"types":"time"
"business_type":"17"
"agent_type":"119"
"agent_version":"9.9.0"
"authcookie":"cookie"
"last_id": ""
"content_id": ""

其中 last_id 是用来进行分页的。

上面的请求使用的 GET 方式,请求代码如下:

def saveMoveInfoToFile(movieId, movieName, lastId):
    url = "http://sns-comment.iqiyi.com/v3/comment/get_comments.action?"
    params = {
        "types":"time",
        "business_type":"17",
        "agent_type":"119",
        "agent_version":"9.9.0",
        "authcookie":"authcookie"
    }
    if lastId != "":
        params["last_id"] =  lastId
    for item in params:
        url = url + item + "=" + params[item] + "&"
    url = url + "content_id=" + movieId
    responseTxt = getMoveinfo(url)

def getMoveinfo(url):
    session = requests.Session()
    headers = {
        "User-Agent": "Mozilla/5.0",
        "Accept": "application/json",
        "Referer": "http://m.iqiyi.com/v_19rqriflzg.html",
        "Origin": "http://m.iqiyi.com",
        "Host": "sns-comment.iqiyi.com",
        "Connection": "keep-alive",
        "Accept-Language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7,zh-TW;q=0.6",
        "Accept-Encoding": "gzip, deflate"
    }
    response = session.get(url, headers=headers)
    if response.status_code == 200:
        return response.text
    return None

请求返回的数据是 JSON ,这里笔者就不贴返回数据,直接解析存储。本处,笔者使用 SQLite 3 进行数据存储。

  • 解析数据
def parseData(movieId, movieName, htmlContent):
    data = json.loads(htmlContent)['data']['comments']
    lastId = "-1"
    if json.dumps(data) == "[]":
        return lastId
    lastId = "-1"
    for item in data:
        originalData = json.dumps(item)
        saveOriginalDataToDatabase(item["id"], movieId, movieName, originalData)
        lastId = item['id']
    return lastId

为了更方便后续进行数据分析,所以将拉下来的评论数据全部进行存储,防止多次去爬取数据。

数据存储在数据库中非常简单,一个简单的 insert 语句就可以搞定。代码如下:

def saveOriginalDataToDatabase(msgId, movieId, movieName, originalData):
    conn = sqlite3.connect('i_can_i_bb.db')
    conn.text_factory = str
    cursor = conn.cursor()
    ins="insert into originalData values (?,?,?,?)"
    v = (movieId+ "_" + msgId, movieId, originalData, movieName)
    cursor.execute(ins, v)
    cursor.close()
    conn.commit()
    conn.close()

本次总共从爱奇艺抓取了 52432 条评论数据。

数据清洗与整理

从爱奇艺抓取的数据,并不是所有的数据我们都需要,这里,只需将我们想要的数据提取出来。

  • 提取数据

此处将用户的个人信息、评论、评论时间、性别等数据提取出来,存储到另一张表中。后续数据分析就从新的表中拿取就可以了,处理逻辑如下:

def saveRealItem(id, originalData):
    user = json.loads(originalData)
    conn = sqlite3.connect('deal_data.db')
    conn.text_factory = str
    cursor = conn.cursor()
    ins="insert into realData values (?,?,?,?,?,?,?,?)"
    content = ""
    if user.has_key("content"):
        content = user["content"]
    v = (id, content, user["userInfo"]["gender"], user["addTime"], user["userInfo"]["uname"], user["userInfo"]["uid"], user["id"], user["userInfo"]["uidType"])
    cursor.execute(ins, v)
    cursor.close()
    conn.commit()
    conn.close()

## 转换数据
if __name__ == '__main__':
    conn = sqlite3.connect('i_can_i_bb.db')
    conn.text_factory = str
    cursor = conn.cursor()
    cursor.execute("select * from originalData")
    values = cursor.fetchall()
    for item in values:
        saveRealItem(item[0], item[2])
    cursor.close()
    conn.commit()
    conn.close()
  • 分析数据

在海量的数据中,我们可以分析出我们想看到的结果。为了更好的数据处理和可视化展示,笔者使用了 Pandas 和 Pyecharts 这两个库,很好用。

因爱奇艺用户数据维度有限,所以只能简单地分析性别。来综合看一下,奇葩说用户的男女比例。话不多说,先放代码:

conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
data = pd.read_sql("select * from realData", conn)
genderData = data.groupby(['gender'])
rateDataCount = genderData["id"].agg([ "count"])
rateDataCount.reset_index(inplace=True)
print rateDataCount
attr = ["女", "男"]
v1 = [rateDataCount["count"][i] for i in range(0, rateDataCount.shape[0])]
pie = Pie("性别比例")
pie.add("", attr, v1, is_label_show=True)
pie.render("html/gender.html")
conn.commit()
conn.close()

使用 Pyecharts 画了一个简单的饼图:

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

从图中可以看出来,男女比例差不多到 1:2,看奇葩说的女性用户,比男性用户要多很多。也许,这也是这一季奇葩说情感话题比较多的一大原因。

接下来,我们再来看一下,每一期的评论数量,看是否能够得出一些不一样的数据。

还是先上代码:

conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
data = pd.read_sql("select * from realData", conn)
movieIdData = data.groupby(['movieId'])
commentDataCount = movieIdData["movieId"].agg([ "count"])
commentDataCount.reset_index(inplace=True)
print commentDataCount
movies = {
    "1629260900":u"第 22 期",
    "1629256800":u"第 21 期",
    ## 后面的数据,这里不列出来
}
attr = [movies[commentDataCount["movieId"][i]] for i in range(0, commentDataCount.shape[0])]
v1 = [commentDataCount["count"][i] for i in range(0, commentDataCount.shape[0])]
bar = Bar("评论数量")
bar.add("数量",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2,
        xaxis_interval=0,is_splitline_show=True,is_label_show=True)
bar.render("html/comment_count.html")
conn.commit()
conn.close()

跑出来的数据如下:

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

从图中的数据我们可以看到,评论数量并不会因为更新早而变得更多。所以可以看出,奇葩说的用户群体是相对稳定的。不仅如此,我们也可以看出,在第 17 期评论数量比其他都要多,很有可能是这一期节目的话题更让用户关注。

分析了上面的两个数据,下面再分析一下评论时间分布,本次分析是按照星期来分析的,所以,还需要对数据进行一定的处理。将每一条评论所在星期更新到数据库中,代码如下:

conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
cursor = conn.cursor()
cursor.execute("select * from realData")
values = cursor.fetchall()
cursor.close()
for item in values:
    realTime = time.localtime(float(item[3]))
    realTime = time.strftime("%A",realTime)
    sql = "UPDATE `realData` SET `week`=\"" + realTime + "\" WHERE `id`=\"" + item[0] + "\""
    cc = conn.cursor()
    cc.execute(sql)
    cc.close()
    conn.commit()
    conn.close()
    time.localtime()

使用折线图分析如下:

conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
data = pd.read_sql("select * from realData", conn)
movieIdData = data.groupby(['week'])
commentDataCount = movieIdData["week"].agg([ "count"])
commentDataCount.reset_index(inplace=True)
print commentDataCount
weekInfo = {
    "Monday":u"周一",
    "Tuesday":u"周二",
    "Wednesday":u"周三",
    "Thursday":u"周四",
    "Friday":u"周五",
    "Saturday":u"周六",
    "Sunday":u"周日"
}
weeks = [
    "Monday",
    "Tuesday",
    "Wednesday",
    "Thursday",
    "Friday",
    "Saturday","Sunday"
]
attr = []
v1 = []
week_temp = [commentDataCount["week"][i] for i in range(0, commentDataCount.shape[0])]
for item in weeks:
    attr.append(weekInfo[item])
    index = week_temp.index(item)
    v1.append(commentDataCount["count"][index])
    bar = Line("天评论数量")
    bar.add("数量",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2,
            xaxis_interval=0,is_splitline_show=True,is_label_show=True)
    bar.render("html/comment_week_count.html")

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

可以看出,奇葩说的忠实用户基本是在更新当天就看,并且周五、周六、周日的评论数量远大于其他天。其实我们还可以分析,更新当天的 4 个小时内评论量有多大,感兴趣的读者可以尝试去跑一下数据。

而作为一名程序员,笔者平时基本是不写评论的,在这里,我们特地分析了一下评论字数的分布,不看不知道,一看吓一跳。先上代码:

# 先获取评论长度,并更新到数据库中
conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
cursor = conn.cursor()
cursor.execute("select * from realData")
values = cursor.fetchall()
cursor.close()
for item in values:
    content = item[1]
    length = 0
    if len(content) <= 20:
        length = 0
    elif len(content) > 20 and len(content) <= 50:
        length = 1
    elif len(content) > 50 and len(content) <= 100:
        length = 2
    else:
        length = 3
    sql = "UPDATE `realData` SET `length`=\"" + str(length) + "\" WHERE `id`=\"" + item[0] + "\""
    cc = conn.cursor()
    cc.execute(sql)
    cc.close() 
    conn.commit()
    conn.close()
    time.localtime()

# 获取数量并展示
conn = sqlite3.connect('deal_data.db')
conn.text_factory = str
data = pd.read_sql("select * from realData", conn)
lengthData = data.groupby(['length'])
lengthDataCount = lengthData["movieId"].agg([ "count"])
lengthDataCount.reset_index(inplace=True)
print lengthDataCount
attr = ["20 字以内", "20~50 字", "50~100 字", "100 字以上"]
v1 = [lengthDataCount["count"][i] for i in range(0, lengthDataCount.shape[0])]
bar = Line("评论字数")
bar.add("数量",attr,v1,is_stack=True,xaxis_rotate=30,yaxix_min=4.2,
        xaxis_interval=0,is_splitline_show=True,is_label_show=True)
bar.render("html/comment_word_count.html")
conn.commit()
conn.close()

分析结果如下:

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

实在是没有想到,100 字以上的评论居然有 1/4,在这个移动端已成视频播放主要平台的时代,用户还能够花费较多精力写下评论,笔者还是比较震惊的。

最后,笔者将通过 jieba 把评论进行分词,然后再以 wordcloud 制作词云来看看,观众朋友的整体评价:

conn = sqlite3.connect('deal_data.db')
    conn.text_factory = str
    data = pd.read_sql("select * from realData", conn)
    jieba.add_word("马薇薇", freq = 20000, tag = None)
    comment = jieba.cut(str(data["content"]),cut_all=False)
    wl_space_split = " ".join(comment)
    backgroudImage = np.array(Image.open(r"./qipashuo.jpg"))
    stopword = STOPWORDS.copy()
    wc = WordCloud(width=1920,height=1080,background_color='white',
        mask=backgroudImage,
        font_path="/Users/zhaocheng/Documents/Deng.ttf",
        stopwords=stopword,max_font_size=400,
        random_state=50)
    wc.generate_from_text(wl_space_split)
    plt.imshow(wc)
    plt.axis("off")
    wc.to_file('html/word_cloud.png')
    conn.commit()
    conn.close()

词云图:

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?

通过上面的词云可以很明显地看出,李诞、(薛)教授、(詹)青云、马薇薇、(傅)首尔等人物名称高频地出现在了评论里面,他们才是这部综艺的焦点人物。

欢迎关注我的公众号,一起交流技术事。

Python 爬取爱奇艺 52432 条数据分析谁才是《奇葩说》的焦点人物?


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法笔记

算法笔记

胡凡、曾磊 / 机械工业出版社 / 2016-7 / 65

这是一本零基础就能读懂的算法书籍,读者不需要因为自己没有语言基础而畏惧。书籍的第2章便是一个C语言的入门教程,内容非常易懂,并且十分实用,阅读完这章就可以对本书需要的C语言基础有一个较好的掌握。 本书已经覆盖了大部分基础经典算法,不仅可以作为考研机试和PAT的学习教材,对其他的一些算法考试(例如CCF的CSP考试)或者考研初试的数据结构科目的学习和理解也很有帮助,甚至仅仅想学习经典算法的读者......一起来看看 《算法笔记》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试