内容简介:提到accept锁,就不得不提起惊群问题。所谓惊群问题,就是指的像Nginx这种多进程的服务器,在fork后同时监听同一个端口时,如果有一个外部连接进来,会导致所有休眠的子进程被唤醒,而最终只有一个子进程能够成功处理accept事件,其他进程都会重新进入休眠中。这就导致出现了很多不必要的schedule和上下文切换,而这些开销是完全不必要的。而在Linux内核的较新版本中,accept调用本身所引起的惊群问题已经得到了解决,但是在Nginx中,accept是交给epoll机制来处理的,epoll的acce
提到accept锁,就不得不提起惊群问题。
所谓惊群问题,就是指的像Nginx这种多进程的服务器,在fork后同时监听同一个端口时,如果有一个外部连接进来,会导致所有休眠的子进程被唤醒,而最终只有一个子进程能够成功处理accept事件,其他进程都会重新进入休眠中。这就导致出现了很多不必要的schedule和上下文切换,而这些开销是完全不必要的。
而在 Linux 内核的较新版本中,accept调用本身所引起的惊群问题已经得到了解决,但是在Nginx中,accept是交给epoll机制来处理的,epoll的accept带来的惊群问题并没有得到解决(应该是epoll_wait本身并没有区别读事件是否来自于一个Listen套接字的能力,所以所有监听这个事件的进程会被这个epoll_wait唤醒。),所以Nginx的accept惊群问题仍然需要定制一个自己的解决方案。
accept锁就是nginx的解决方案,本质上这是一个跨进程的互斥锁,以这个互斥锁来保证只有一个进程具备监听accept事件的能力。
实现上accept锁是一个跨进程锁,其在Nginx中是一个全局变量,声明如下:
ngx_shmtx_t ngx_accept_mutex; 复制代码
这是一个在event模块初始化时就分配好的锁,放在一块进程间共享的内存中,以保证所有进程都能访问这一个实例,其加锁解锁是借由linux的原子变量来做CAS,如果加锁失败则立即返回,是一种非阻塞的锁。加解锁代码如下:
static ngx_inline ngx_uint_t ngx_shmtx_trylock(ngx_shmtx_t *mtx) { return (*mtx->lock == 0 && ngx_atomic_cmp_set(mtx->lock, 0, ngx_pid)); } #define ngx_shmtx_lock(mtx) ngx_spinlock((mtx)->lock, ngx_pid, 1024) #define ngx_shmtx_unlock(mtx) (void) ngx_atomic_cmp_set((mtx)->lock, ngx_pid, 0) 复制代码
可以看出,调用 ngx_shmtx_trylock
失败后会立刻返回而不会阻塞。
1.2 accept锁如何保证只有一个进程能够处理新连接
要解决epoll带来的accept锁的问题也很简单,只需要保证同一时间只有一个进程注册了accept的epoll事件即可。
Nginx采用的处理模式也没什么特别的,大概就是如下的逻辑:
尝试获取accept锁 if 获取成功: 在epoll中注册accept事件 else: 在epoll中注销accept事件 处理所有事件 释放accept锁 复制代码
当然这里忽略了延后事件的处理,这部分我们放到后面讨论。
对于accept锁的处理和epoll中注册注销accept事件的的处理都是在 ngx_trylock_accept_mutex
中进行的。而这一系列过程则是在nginx主体循环中反复调用的 void ngx_process_events_and_timers(ngx_cycle_t *cycle)
中进行。
也就是说,每轮事件的处理都会首先竞争accept锁,竞争成功则在epoll中注册accept事件,失败则注销accept事件,然后处理完事件之后,释放accept锁。由此只有一个进程监听一个listen套接字,从而避免了惊群问题。
1.3 事件处理机制为不长时间占用accept锁作了哪些努力
accept锁处理惊群问题的方案看起来似乎很美,但如果完全使用上述逻辑,就会有一个问题:如果服务器非常忙,有非常多事件要处理,那么“处理所有事件这一步”就会消耗非常长的时间,也就是说,某一个进程长时间占用accept锁,而又无暇处理新连接;其他进程又没有占用accept锁,同样无法处理新连接——至此,新连接就处于无人处理的状态,这对服务的实时性无疑是很要命的。
为了解决这个问题,Nginx采用了将事件处理延后的方式。即在 ngx_process_events
的处理中,仅仅将事件放入两个队列中:
ngx_thread_volatile ngx_event_t *ngx_posted_accept_events; ngx_thread_volatile ngx_event_t *ngx_posted_events; 复制代码
返回后先处理 ngx_posted_accept_events
后立刻释放accept锁,然后再慢慢处理其他事件。
即 ngx_process_events
仅对 epoll_wait
进行处理,事件的消费则放到accept锁释放之后,来最大限度地缩短占有accept的时间,来让其他进程也有足够的时机处理accept事件。
那么具体是怎么实现的呢?其实就是在 static ngx_int_t ngx_epoll_process_events(ngx_cycle_t *cycle, ngx_msec_t timer, ngx_uint_t flags)
的flags参数中传入一个 NGX_POST_EVENTS
的标志位,处理事件时检查这个标志位即可。
这里只是避免了事件的消费对于accept锁的长期占用,那么万一epoll_wait本身占用的时间很长呢?这种事情也不是不可能发生。这方面的处理也很简单,epoll_wait本身是有超时时间的,限制住它的值就可以了,这个参数保存在 ngx_accept_mutex_delay
这个全局变量中。
下面放上 ngx_process_events_and_timers
的实现代码,可以大概一观相关的处理:
void ngx_process_events_and_timers(ngx_cycle_t *cycle) { ngx_uint_t flags; ngx_msec_t timer, delta; /* 省略一些处理时间事件的代码 */ // 这里是处理负载均衡锁和accept锁的时机 if (ngx_use_accept_mutex) { // 如果负载均衡token的值大于0, 则说明负载已满,此时不再处理accept, 同时把这个值减一 if (ngx_accept_disabled > 0) { ngx_accept_disabled--; } else { // 尝试拿到accept锁 if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) { return; } // 拿到锁之后把flag加上post标志,让所有事件的处理都延后 // 以免太长时间占用accept锁 if (ngx_accept_mutex_held) { flags |= NGX_POST_EVENTS; } else { if (timer == NGX_TIMER_INFINITE || timer > ngx_accept_mutex_delay) { timer = ngx_accept_mutex_delay; // 最多等ngx_accept_mutex_delay个毫秒,防止占用太久accept锁 } } } } delta = ngx_current_msec; // 调用事件处理模块的process_events,处理一个epoll_wait的方法 (void) ngx_process_events(cycle, timer, flags); delta = ngx_current_msec - delta; //计算处理events事件所消耗的时间 ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "timer delta: %M", delta); // 如果有延后处理的accept事件,那么延后处理这个事件 if (ngx_posted_accept_events) { ngx_event_process_posted(cycle, &ngx_posted_accept_events); } // 释放accept锁 if (ngx_accept_mutex_held) { ngx_shmtx_unlock(&ngx_accept_mutex); } // 处理所有的超时事件 if (delta) { ngx_event_expire_timers(); } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "posted events %p", ngx_posted_events); if (ngx_posted_events) { if (ngx_threaded) { ngx_wakeup_worker_thread(cycle); } else { // 处理所有的延后事件 ngx_event_process_posted(cycle, &ngx_posted_events); } } } 复制代码
再来看看 ngx_epoll_process_events
的相关处理:
// 读事件 if ((revents & EPOLLIN) && rev->active) { if ((flags & NGX_POST_THREAD_EVENTS) && !rev->accept) { rev->posted_ready = 1; } else { rev->ready = 1; } if (flags & NGX_POST_EVENTS) { queue = (ngx_event_t **) (rev->accept ? &ngx_posted_accept_events : &ngx_posted_events); ngx_locked_post_event(rev, queue); } else { rev->handler(rev); } } wev = c->write; // 写事件 if ((revents & EPOLLOUT) && wev->active) { if (flags & NGX_POST_THREAD_EVENTS) { wev->posted_ready = 1; } else { wev->ready = 1; } if (flags & NGX_POST_EVENTS) { ngx_locked_post_event(wev, &ngx_posted_events); } else { wev->handler(wev); } } 复制代码
处理也相对简单,如果拿到了accept锁,就会有 NGX_POST_EVENTS
标志那么就会放到相应的队列中。没有的话就会直接处理事件。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。