Matplotlib数据可视化实例分析

栏目: 编程工具 · 发布时间: 6年前

内容简介:摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切
编辑推荐:
本文来自于cnblogs,文章主要介绍了使用matplotlib绘制折线图、随机漫步以及Pygal模拟掷骰子等例子。

摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。“数据可视化”这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一

1 折线图的制作

1.1 需求描述

使用matplotlib绘制一个简单的折线图,在对其进行定制,以实现信息更加丰富的数据可视化,绘制(1,2,3,4,5)的平方折线图。

1.2 源码

#coding=utf-8

import matplotlib as mpl

import matplotlib.pyplot as plt

import pylab

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# squares = [1,35,43,3,56,7]

input_values = [1,2,3,4,5]

squares = [1,4,9,16,25]

# 设置折线粗细

plt.plot(input_values,squares,linewidth=5)

# 设置标题和坐标轴

plt.title('平方数图',fontsize=24)

plt.xlabel('值',fontsize=14)

plt.ylabel('平方值',fontsize=14)

# 设置刻度大小

plt.tick_params(axis='both',labelsize=14)

plt.show()

1.3 生成结果

Matplotlib数据可视化实例分析

2 scatter()绘制散点图

2.1 需求描述

使用matplotlib绘制一个简单的散列点图,在对其进行定制,以实现信息更加丰富的数据可视化,绘制(1,2,3,4,5)的散点图。

2.2 源码

#coding=utf-8

import matplotlib as mpl

import matplotlib.pyplot as plt

import pylab

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# 设置散列点纵横坐标值

x_values = [1,2,3,4,5]

y_values = [1,4,9,16,25]

# s设置散列点的大小,edgecolor='none'为删除数据点的轮廓

plt.scatter(x_values,y_values,c='red',edgecolor='none',

s=40)

# 设置标题和坐标轴

plt.title('平方数图',fontsize=24)

plt.xlabel('值',fontsize=14)

plt.ylabel('平方值',fontsize=14)

# 设置刻度大小

plt.tick_params(axis='both',which='major',labelsize=14)

# 自动保存图表,参数2是剪裁掉多余空白区域

plt.savefig('squares_plot.png',bbox_inches='tight')

plt.show()

2.3 生成结果

Matplotlib数据可视化实例分析

2.4 需求改进

使用matplotlib绘制一个简单的散列点图,在对其进行定制,以实现信息更加丰富的数据可视化,绘制1000个数的散点图。并自动统计数据的平方,自定义坐标轴

2.5 源码改进

#coding=utf-8

import matplotlib as mpl

import matplotlib.pyplot as plt

import pylab

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# 设置散列点纵横坐标值

# x_values = [1,2,3,4,5]

# y_values = [1,4,9,16,25]

# 自动计算数据

x_values = list(range(1,1001))

y_values = [x**2 for x in x_values]

# s设置散列点的大小,edgecolor='none'为删除数据点的轮廓

# plt.scatter(x_values,y_values,c='red',edgecolor='none',

s=40)

# 自定义颜色c=(0,0.8,0.8)红绿蓝

# plt.scatter(x_values,y_values,c=(0,0.8,0.8),

edgecolor='none',s=40)

# 设置颜色随y值变化而渐变

plt.scatter(x_values,y_values,c=y_values,cmap=plt.

cm.Reds,edgecolor='none',s=40)

# 设置标题和坐标轴

plt.title('平方数图',fontsize=24)

plt.xlabel('值',fontsize=14)

plt.ylabel('平方值',fontsize=14)

#设置坐标轴的取值范围

plt.axis([0,1100,0,1100000])

# 设置刻度大小

plt.tick_params(axis='both',which='major',labelsize=14)

# 自动保存图表,参数2是剪裁掉多余空白区域

plt.savefig('squares_plot.png',bbox_inches='tight')

plt.show()

2.6 改进结果

Matplotlib数据可视化实例分析

3 随机漫步图

3.1 需求描述

随机漫步是每次步行方向和步长都是随机的,没有明确的方向,结果由一系列随机决策决定的。本实例中random_walk决策步行的左右上下方向和步长的随机性,rw_visual是图形化展示。

3.2 源码

random_walk.py

from random import choice

class RandomWalk():

'''一个生成随机漫步数据的类'''

def __init__(self,num_points=5000):

'''初始化随机漫步属性'''

self.num_points = num_points

self.x_values = [0]

self.y_values = [0]

def fill_walk(self):

'''计算随机漫步包含的所有点'''

while len(self.x_values)<self.num_points:

# 决定前进方向及沿着该方向前进的距离

x_direction = choice([1,-1])

x_distance = choice([0,1,2,3,4])

x_step = x_direction*x_distance

y_direction = choice([1,-1])

y_distance = choice([0,1,2,3,4])

y_step = y_direction*y_distance

# 拒绝原地踏步

if x_step == 0 and y_step == 0:

continue

# 计算下一个点的x和y

next_x = self.x_values[-1] + x_step

next_y = self.y_values[-1] + y_step

self.x_values.append(next_x)

self.y_values.append(next_y)

rw_visual.py

#-*- coding: utf-8 -*-

#coding=utf-8

import matplotlib as mpl

import matplotlib.pyplot as plt

import pylab

from random_walk import RandomWalk

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# 创建RandomWalk实例

rw = RandomWalk()

rw.fill_walk()

plt.figure(figsize=(10,6))

point_numbers = list(range(rw.num_points))

# 随着点数的增加渐变深红色

plt.scatter(rw.x_values,rw.y_values,c=point_numbers,

# 设置起始点和终点颜色

plt.scatter(0,0,c='green',edgecolors='none',s=100)

plt.scatter(rw.x_values[-1],rw.y_values[-1],c='blue',

edgecolors='none',s=100)

# 设置标题和纵横坐标

plt.title('随机漫步图',fontsize=24)

plt.xlabel('左右步数',fontsize=14)

plt.ylabel('上下步数',fontsize=14)

# 隐藏坐标轴

plt.axes().get_xaxis().set_visible(False)

plt.axes().get_yaxis().set_visible(False)

plt.show()

3.3 生成结果

Matplotlib数据可视化实例分析

4 Pygal模拟掷骰子

4.1 需求描述

对掷骰子的结果进行分析,生成一个掷筛子的结果数据集并根据结果绘制出一个图形。

4.2 源码

Die类

import random

class Die:

"""

一个骰子类

"""

def __init__(self, num_sides=6):

self.num_sides = num_sides

def roll(self):

# 返回一个1和筛子面数之间的随机数

return random.randint(1, self.num_sides)

die_visual.py

#coding=utf-8

from die import Die

import pygal

import matplotlib as mpl

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

die1 = Die()

die2 = Die()

results = []

for roll_num in range(1000):

result =die1.roll()+die2.roll()

results.append(result)

# print(results)

# 分析结果

frequencies = []

max_result = die1.num_sides+die2.num_sides

for value in range(2,max_result+1):

frequency = results.count(value)

frequencies.append(frequency)

print(frequencies)

# 直方图

hist = pygal.Bar()

hist.title = '骰子投掷1000次各面结果统计图'

hist.x_labels =[x for x in range(2,max_result+1)]

hist.x_title ='结果'

hist.y_title = '结果分布'

hist.add('D6+D6',frequencies)

hist.render_to_file('die_visual.svg')

# hist.show()

4.3 生成结果

Matplotlib数据可视化实例分析

5 同时掷两个骰子

5.1 需求描述

对同时掷两个骰子的结果进行分析,生成一个掷筛子的结果数据集并根据结果绘制出一个图形。

5.2 源码

#conding=utf-8

from die import Die

import pygal

import matplotlib as mpl

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

die1 = Die()

die2 = Die(10)

results = []

for roll_num in range(5000):

result = die1.roll() + die2.roll()

results.append(result)

# print(results)

# 分析结果

frequencies = []

max_result = die1.num_sides+die2.num_sides

for value in range(2,max_result+1):

frequency = results.count(value)

frequencies.append(frequency)

# print(frequencies)

hist = pygal.Bar()

hist.title = 'D6 和 D10 骰子5000次投掷的结果直方图'

# hist.x_labels=['2','3','4','5','6','7','8','9','10',

'11','12','13','14','15','16']

hist.x_labels=[x for x in range(2,max_result+1)]

hist.x_title = 'Result'

hist.y_title ='Frequency of Result'

hist.add('D6 + D10',frequencies)

hist.render_to_file('dice_visual.svg')

5.3 生成结果

Matplotlib数据可视化实例分析

6 绘制气温图表

6.1 需求描述

对csv文件进行处理,提取并读取天气数据,绘制气温表,在图表中添加日期并绘制最高气温和最低气温的折线图,并对气温区域进行着色。

6.2 源码

csv文件中2014年7月部分数据信息

View Code

AKDT,Max TemperatureF,Mean TemperatureF,

Min TemperatureF,Max Dew PointF,MeanDew

PointF,Min DewpointF,Max Humidity, Mean Humidity,

Min Humidity, Max Sea Level PressureIn,

Mean Sea Level PressureIn, Min Sea Level PressureIn,

Max VisibilityMiles, Mean VisibilityMiles, Min VisibilityMiles,

Max Wind SpeedMPH, Mean Wind SpeedMPH, Max Gust

SpeedMPH,PrecipitationIn, CloudCover, Events, WindDirDegrees

2014-7-1,64,56,50,53,51,48,96,83,58,30.19,30.00,29.79,

10,10,10,7,4,,0.00,7,,337

2014-7-2,71,62,55,55,52,46,96,80,51,29.81,29.75,29.66,

10,9,2,13,5,,0.14,7,Rain,327

2014-7-3,64,58,53,55,53,51,97,85,72,29.88,29.86,29.81,

10,10,8,15,4,,0.01,6,,258

2014-7-4,59,56,52,52,51,50,96,88,75,29.91,29.89,29.87,

10,9,2,9,2,,0.07,7,Rain,255

2014-7-5,69,59,50,52,50,46,96,72,49,29.88,29.82,29.79,

10,10,10,13,5,,0.00,6,,110

2014-7-6,62,58,55,51,50,46,80,71,58,30.13,30.07,29.89,

10,10,10,20,10,29,0.00,6,Rain,213

2014-7-7,61,57,55,56,53,51,96,87,75,30.10,30.07,30.05,

10,9,4,16,4,25,0.14,8,Rain,211

2014-7-8,55,54,53,54,53,51,100,94,86,30.10,30.06,30.04,

10,6,2,12,5,23,0.84,8,Rain,159

2014-7-9,57,55,53,56,54,52,100,96,83,30.24,30.18,30.11,

10,7,2,9,5,,0.13,8,Rain,201

2014-7-10,61,56,53,53,52,51,100,90,75,30.23,30.17,30.03,

10,8,2,8,3,,0.03,8,Rain,215

2014-7-11,57,56,54,56,54,51,100,94,84,30.02,30.00,29.98,

10,5,2,12,5,,1.28,8,Rain,250

2014-7-12,59,56,55,58,56,55,100,97,93,30.18,30.06,29.99,

10,6,2,15,7,26,0.32,8,Rain,275

2014-7-13,57,56,55,58,56,55,100,98,94,30.25,30.22,30.18,

10,5,1,8,4,,0.29,8,Rain,291

2014-7-14,61,58,55,58,56,51,100,94,83,30.24,30.23,30.22,

10,7,0,16,4,,0.01,8,Fog,307

2014-7-15,64,58,55,53,51,48,93,78,64,30.27,30.25,30.24,

10,10,10,17,12,,0.00,6,,318

2014-7-16,61,56,52,51,49,47,89,76,64,30.27,30.23,30.16,

10,10,10,15,6,,0.00,6,,294

2014-7-17,59,55,51,52,50,48,93,84,75,30.16,30.04,29.82,

10,10,6,9,3,,0.11,7,Rain,232

2014-7-18,63,56,51,54,52,50,100,84,67,29.79,29.69,29.65

,10,10,7,10,5,,0.05,6,Rain,299

2014-7-19,60,57,54,55,53,51,97,88,75,29.91,29.82,29.68,

10,9,2,9,2,,0.00,8,,292

2014-7-20,57,55,52,54,52,50,94,89,77,29.92,29.87,29.78,

10,8,2,13,4,,0.31,8,Rain,155

2014-7-21,69,60,52,53,51,50,97,77,52,29.99,29.88,29.78,

10,10,10,13,4,,0.00,5,,297

2014-7-22,63,59,55,56,54,52,90,84,77,30.11,30.04,29.99,

10,10,10,9,3,,0.00,6,Rain,240

2014-7-23,62,58,55,54,52,50,87,80,72,30.10,30.03,29.96,

10,10,10,8,3,,0.00,7,,230

2014-7-24,59,57,54,54,52,51,94,84,78,29.95,29.91,29.89,

10,9,3,17,4,28,0.06,8,Rain,207

2014-7-25,57,55,53,55,53,51,100,92,81,29.91,29.87,29.83,

10,8,2,13,3,,0.53,8,Rain,141

2014-7-26,57,55,53,57,55,54,100,96,93,29.96,29.91,29.87,

10,8,1,15,5,24,0.57,8,Rain,216

2014-7-27,61,58,55,55,54,53,100,92,78,30.10,30.05,29.97,

10,9,2,13,5,,0.30,8,Rain,213

2014-7-28,59,56,53,57,54,51,97,94,90,30.06,30.00,29.96,

10,8,2,9,3,,0.61,8,Rain,261

2014-7-29,61,56,51,54,52,49,96,89,75,30.13,30.02,29.95,

10,9,3,14,4,,0.25,6,Rain,153

2014-7-30,61,57,54,55,53,52,97,88,78,30.31,30.23,30.14,

10,10,8,8,4,,0.08,7,Rain,160

2014-7-31,66,58,50,55,52,49,100,86,65,30.31,30.29,30.26,

10,9,3,10,4,,0.00,3,,217

Matplotlib数据可视化实例分析

highs_lows.py文件信息

import csv

from datetime import datetime

from matplotlib import pyplot as plt

import matplotlib as mpl

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# Get dates, high, and low temperatures from file.

filename = 'death_valley_2014.csv'

with open(filename) as f:

reader = csv.reader(f)

header_row = next(reader)

# print(header_row)

# for index,column_header in enumerate(header_row):

# print(index,column_header)

dates, highs,lows = [],[], []

for row in reader:

try:

current_date = datetime.strptime(row[0], "%Y-%m-%d")

high = int(row[1])

low = int(row[3])

except ValueError: # 处理

print(current_date, 'missing data')

else:

dates.append(current_date)

highs.append(high)

lows.append(low)

# 汇制数据图形

fig = plt.figure(dpi=120,figsize=(10,6))

plt.plot(dates,highs,c='red',alpha=0.5)# alpha指定透明度

plt.plot(dates,lows,c='blue',alpha=0.5)

plt.fill_between(dates,highs,lows,facecolor='orange',

alpha=0.1)#接收一个x值系列和y值系列,给图表区域着色

#设置图形格式

plt.title('2014年加利福尼亚死亡谷日气温最高最低图',

fontsize=24)

plt.xlabel('日(D)',fontsize=16)

fig.autofmt_xdate() # 绘制斜体日期标签

plt.ylabel('温度(F)',fontsize=16)

plt.tick_params(axis='both',which='major',labelsize=16)

# plt.axis([0,31,54,72]) # 自定义数轴起始刻度

plt.savefig('highs_lows.png',bbox_inches='tight')

plt.show()

6.3 生成结果

Matplotlib数据可视化实例分析

7 制作世界人口地图:JSON格式

7.1 需求描述

下载json格式的人口数据,并使用json模块来处理。

7.2 源码

json数据population_data.json部分信息

Matplotlib数据可视化实例分析

countries.py

from pygal.maps.world import COUNTRIES

for country_code in sorted(COUNTRIES.keys()):

print(country_code, COUNTRIES[country_code])

countries_codes.py

from pygal.maps.world import COUNTRIES

def get_country_code(country_name):

"""Return the Pygal 2-digit country code for the given country."""

for code, name in COUNTRIES.items():

if name == country_name:

return code

# If the country wasn't found, return None.

return

print(get_country_code('Thailand'))

# print(get_country_code('Andorra'))

americas.py

import pygal

wm =pygal.maps.world.World()

wm.title = 'North, Central, and South America'

wm.add('North America', ['ca', 'mx', 'us'])

wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])

wm.add('South America', ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf',

'gy', 'pe', 'py', 'sr', 'uy', 've'])

wm.add('Asia', ['cn', 'jp', 'th'])

wm.render_to_file('americas.svg')

world_population.py

#conding = utf-8

import json

from matplotlib import pyplot as plt

import matplotlib as mpl

from country_codes import get_country_code

import pygal

from pygal.style import RotateStyle

from pygal.style import LightColorizedStyle

# 解决中文乱码问题

mpl.rcParams['font.sans-serif']=['SimHei']

mpl.rcParams['axes.unicode_minus']=False

# 加载json数据

filename='population_data.json'

with open(filename) as f:

pop_data = json.load(f)

# print(pop_data[1])

# 创建一个包含人口的字典

cc_populations={}

# cc1_populations={}

# 打印每个国家2010年的人口数量

for pop_dict in pop_data:

if pop_dict['Year'] == '2010':

country_name = pop_dict['Country Name']

population = int(float(pop_dict['Value'])) # 字符串数值转化为整数

# print(country_name + ":" + str(population))

code = get_country_code(country_name)

if code:

cc_populations[code] = population

# elif pop_dict['Year'] == '2009':

# country_name = pop_dict['Country Name']

# population = int(float(pop_dict['Value'])) # 字符串数值转化为整数

# # print(country_name + ":" + str(population))

# code = get_country_code(country_name)

# if code:

cc_pops_1,cc_pops_2,cc_pops_3={},{},{}

for cc,pop in cc_populations.items():

if pop <10000000:

cc_pops_1[cc]=pop

elif pop<1000000000:

cc_pops_2[cc]=pop

else:

cc_pops_3[cc]=pop

# print(len(cc_pops_1),len(cc_pops_2),len(cc_pops_3))

wm_style = RotateStyle('#336699',base_style=LightColorizedStyle)

wm =pygal.maps.world.World(style=wm_style)

wm.title = '2010年世界各国人口统计图'

wm.add('0-10m', cc_pops_1)

wm.add('10m-1bm',cc_pops_2)

wm.add('>1bm',cc_pops_3)

# wm.add('2009', cc1_populations)

wm.render_to_file('world_populations.svg')

7.3 生成结果

countries.py

Matplotlib数据可视化实例分析

world_population.py

Matplotlib数据可视化实例分析

8 Pygal可视化github仓库

8.1 需求描述

调用web API对GitHub数据仓库进行可视化展示:https://api.github.com/search/repositories?q=language:python&sort=stars

8.2 源码

python_repos.py

# coding=utf-8

import requests

import pygal

from pygal.style import LightColorizedStyle as LCS, LightenStyle as LS

# Make an API call, and store the response.

url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'

r = requests.get(url)

print("Status code:", r.status_code) # 查看请求是否成功,200表示成功

response_dict = r.json()

# print(response_dict.keys())

print("Total repositories:", response_dict['total_count'])

# Explore information about the repositories.

repo_dicts = response_dict['items']

print("Repositories returned:",len(repo_dicts))

# 查看项目信息

# repo_dict =repo_dicts[0]

# print('\n\neach repository:')

# for repo_dict in repo_dicts:

# print("\nName:",repo_dict['name'])

# print("Owner:",repo_dict['owner']['login'])

# print("Stars:",repo_dict['stargazers_count'])

# print("Repository:",repo_dict['html_url'])

# print("Description:",repo_dict['description'])

# 查看每个项目的键

# print('\nKeys:',len(repo_dict))

# for key in sorted(repo_dict.keys()):

# print(key)

names, plot_dicts = [], []

for repo_dict in repo_dicts:

names.append(repo_dict['name'])

plot_dicts.append(repo_dict['stargazers_count'])

# 可视化

my_style = LS('#333366', base_style=LCS)

my_config = pygal.Config() # Pygal类Config实例化

my_config.x_label_rotation = 45 # x轴标签旋转45度

my_config.show_legend = False # show_legend隐藏图例

my_config.title_font_size = 24 # 设置图标标题主标签副标签的字体大小

my_config.label_font_size = 14

my_config.major_label_font_size = 18

my_config.truncate_label = 15 # 较长的项目名称缩短15字符

my_config.show_y_guides = False # 隐藏图表中的水平线

my_config.width = 1000 # 自定义图表的宽度

chart = pygal.Bar(my_config, style=my_style)

chart.title = 'Most-Starred Python Projects on GitHub'

chart.x_labels = names

chart.add('', plot_dicts)

chart.render_to_file('python_repos.svg')

8.3 生成结果

Matplotlib数据可视化实例分析

9 参考文献

1 matplotlib官网

2 天气数据官网

3 实验数据下载

4 google charts

5 Plotly

6 Jpgraph


以上所述就是小编给大家介绍的《Matplotlib数据可视化实例分析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算机与人脑

计算机与人脑

[美] 约·冯·诺意曼 / 甘子玉 / 商务印书馆 / 1965-3 / 7.00元

《计算机与人脑》是自动机(以电子计算机为代表)理论研究中的重要材料之一。原书是冯·诺意曼在1955-1956年准备讲演用的未完成稿。著者从数学的角度,主要是从逻辑和统计数学的角度,探讨计算机的运算和人脑思维的过程,进行了一些比较研究。书中的许多技术推论带有预测性,尚待今后实验研究及进一步探讨才能判断其是否正确。一起来看看 《计算机与人脑》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

URL 编码/解码
URL 编码/解码

URL 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具