Kubernetes 1.11.3上使用动态PV部署EFK 6.4.0

栏目: 编程工具 · 发布时间: 5年前

内容简介:Kubernetes 上部署 efk 日志收集系统环境版本:OS:CentOS 7.4(1804)

Kubernetes 上部署 efk 日志收集系统

环境版本:

OS:CentOS 7.4(1804)

Kubernetes:1.11.3

Elasticsearch:5.4.0

Fuentd-elasticsearch:2.0.2

Kibana:6.4.0

本地镜像仓库:192.168.22.8

NFS-Server:192.168.22.8

部署顺序:

Kibana -> NFS动态存储 -> Elasticsearch -> Fuentd-es ->设置节点label

Kibana初始化要10-15分钟,时间较长,所以先部署

开始部署:

一、部署Kibana

1、使用Deployment方式部署kibana

[root@server efk]# cat kibana-deployment.yaml 
apiVersion: apps/v1beta2
kind: Deployment
metadata:
  name: kibana-logging
  namespace: kube-system
  labels:
    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  replicas: 1
  selector:
    matchLabels:
      k8s-app: kibana-logging
  template:
    metadata:
      labels:
        k8s-app: kibana-logging
    spec:
      containers:
      - name: kibana-logging
        image: 192.168.22.8/kibana:6.4.0    ##此处192.168.22.8改为你自己的仓库,或阿里仓库,删除ip就是走默认配置下载
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch-logging:9200
          - name: SERVER_BASEPATH
            #value: /api/v1/proxy/namespaces/kube-system/services/kibana-logging
            value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
          - name: XPACK_MONITORING_ENABLED
            value: "false"
          - name: XPACK_SECURITY_ENABLED
            value: "false"
        ports:
        - containerPort: 5601
          name: ui
          protocol: TCP

[root@server efk]# kubectl create -f kibana-deployment.yaml       ##部署kibana

查看是否部署成功

[root@server efk]# kubectl get pod -n kube-system |grep kibana      
kibana-logging-69c8b74dc7-m7n84         1/1       Running   0          21m

如果部署失败,则使用以下命令查看错误信息

# kubectl describe pod -n kube-system kibana-logging-69c8b74dc7-m7n84    ##注意最后那一段为kibana的pod,要写你自己的

# kubectl logs -n kube-system kibana-logging-69c8b74dc7-m7n84

2、部署kibana的service

[root@server efk]# cat kibana-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: kibana-logging
  namespace: kube-system
  labels:
    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Kibana"
spec:
  ports:
  - port: 5601
    protocol: TCP
    targetPort: ui
  selector:
    k8s-app: kibana-logging

查看是否部署成功

[root@server efk]# kubectl get service -n kube-system  |grep "kibana"
kibana-logging          ClusterIP   10.68.251.197   <none>        5601/TCP        26m

二、部署NFS动态存储provisioner

1、在192.168.22.8上安装NFS-Server

[root@harbor ~]#  yum -y install nfs-server

配置nfs

[root@harbor ~]# cat /etc/exports
/share          *(rw,sync,insecure,no_subtree_check,no_root_squash)

[root@harbor ~]#  mkdir /share

启动NFS-Server

[root@harbor ~]# systemctl restart nfs-server

查看是否共享成功

[root@harbor ~]# showmount -e 192.168.22.8
Export list for 192.168.22.8:
/share     *

--------OK nfs-server配置成功

2、在Kubernetes使用nfs部署动态pv provisioner

[root@server efk]# cat nfs-provisioner.yaml 
apiVersion: v1
kind: Service
metadata:
  name: kibana-logging
  namespace: kube-system
  labels:
    k8s-app: kibana-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Kibana"
spec:
  ports:
  - port: 5601
    protocol: TCP
    targetPort: ui
  selector:
    k8s-app: kibana-logging
[root@server efk]# 
[root@server efk]# 
[root@server efk]# cat nfs-provisioner-01.yaml 
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
  namespace: kube-system

---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-client-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]

---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    namespace: kube-system 
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io

---
kind: Deployment
apiVersion: apps/v1beta1
metadata:
  name: nfs-provisioner-01
  namespace: kube-system
spec:
  replicas: 1
  strategy:
    type: Recreate
  selector:
    matchLabels:
      app: nfs-provisioner-01
  template:
    metadata:
      labels:
        app: nfs-provisioner-01
    spec:
      serviceAccountName: nfs-client-provisioner
      containers:
        - name: nfs-client-provisioner
          #image: quay.io/external_storage/nfs-client-provisioner:latest
          image: jmgao1983/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              # 此处供应者名字供storageclass调用
              value: nfs-provisioner-01
            - name: NFS_SERVER
              value: 192.168.22.8
            - name: NFS_PATH
              value: /share
      volumes:
        - name: nfs-client-root
          nfs:
            server: 192.168.22.8
            path: /share

---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-dynamic-class
provisioner: nfs-provisioner-01

创建pv

[root@server efk]# kubectl create -f ./nfs-provisioner.yaml

查看是否创建成功

[root@server efk]# kubectl get pod -n kube-system |grep "nfs"
nfs-provisioner-01-65d4f6df88-qq6k9     1/1       Running   0          37m

三、部署Elasticsearch

因为search是有数据的所以要按有状态的服务来部署,这里使用上一步仓库的动态存储pv来存储数据

[root@server efk]# cat es-statefulset.yaml
# RBAC authn and authz
apiVersion: v1
kind: ServiceAccount
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: elasticsearch-logging
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
  - ""
  resources:
  - "services"
  - "namespaces"
  - "endpoints"
  verbs:
  - "get"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  namespace: kube-system
  name: elasticsearch-logging
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
  name: elasticsearch-logging
  namespace: kube-system
  apiGroup: ""
roleRef:
  kind: ClusterRole
  name: elasticsearch-logging
  apiGroup: ""
---
# Elasticsearch deployment itself
apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    version: v6.4.0
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  serviceName: elasticsearch-logging
  replicas: 2
  selector:
    matchLabels:
      k8s-app: elasticsearch-logging
      version: v6.4.0
  template:
    metadata:
      labels:
        k8s-app: elasticsearch-logging
        version: v6.4.0
        kubernetes.io/cluster-service: "true"
    spec:
      serviceAccountName: elasticsearch-logging
      containers:
      #- image: gcr.io/google-containers/elasticsearch:v5.6.4
      #- image: mirrorgooglecontainers/elasticsearch:v5.6.4
      - image: 192.168.22.8/efk/elasticsearch:6.4.0
        name: elasticsearch-logging
        resources:
          # need more cpu upon initialization, therefore burstable class
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        ports:
        - containerPort: 9200
          name: db
          protocol: TCP
        - containerPort: 9300
          name: transport
          protocol: TCP
        volumeMounts:
        - name: elasticsearch-logging
          mountPath: /data
        env:
        - name: "NAMESPACE"
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
      # Elasticsearch requires vm.max_map_count to be at least 262144.
      # If your OS already sets up this number to a higher value, feel free
      # to remove this init container.
      initContainers:
      - image: alpine:3.6
        command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"]
        name: elasticsearch-logging-init
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: elasticsearch-logging
    spec:
      accessModes: [ "ReadWriteMany" ]
      storageClassName: "nfs-dynamic-class"
      resources:
        requests:
          storage: 5Gi

创建elasticsearch应用pod

[root@server efk]# kubectl create -f  es-statefulset.yaml

查看是否创建成功

[root@server efk]# kubectl get pod -n kube-system  |grep elasticsearch
elasticsearch-logging-0                 1/1       Running   0          40m
elasticsearch-logging-1                 1/1       Running   0          40m

创建service

[root@server efk]# cat es-service.yaml 
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch-logging
  namespace: kube-system
  labels:
    k8s-app: elasticsearch-logging
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "Elasticsearch"
spec:
  ports:
  - port: 9200
    protocol: TCP
    targetPort: db
#  clusterIP: None
  selector:
    k8s-app: elasticsearch-logging
[root@server efk]# kubectl create -f es-service.yaml

查看是否创建成功

[root@server efk]# kubectl get service -n kube-system |grep elasticsearch
elasticsearch-logging   ClusterIP   10.68.150.151   <none>        9200/TCP        41m

三、部署fluentd-es

fluentd 采集规则文件

[root@server efk]# cat fluentd-es-configmap.yaml 
kind: ConfigMap
apiVersion: v1
data:
  containers.input.conf: |-
    <source>
      type tail
      path /var/log/containers/*.log
      pos_file /var/log/es-containers.log.pos
      time_format %Y-%m-%dT%H:%M:%S.%NZ
      tag kubernetes.*
      read_from_head true
      format multi_format
      <pattern>
        format json
        time_key time
        time_format %Y-%m-%dT%H:%M:%S.%NZ
      </pattern>
      <pattern>
        format /^(?<time>.+) (?<stream>stdout|stderr) [^ ]* (?<log>.*)$/
        time_format %Y-%m-%dT%H:%M:%S.%N%:z
      </pattern>
    </source>
  system.input.conf: |-

    <source>
      type tail
      format /^(?<time>[^ ]* [^ ,]*)[^\[]*\[[^\]]*\]\[(?<severity>[^ \]]*) *\] (?<message>.*)$/
      time_format %Y-%m-%d %H:%M:%S
      path /var/log/salt/minion
      pos_file /var/log/es-salt.pos
      tag salt
    </source>

    # Example:
    # Dec 21 23:17:22 gke-foo-1-1-4b5cbd14-node-4eoj startupscript: Finished running startup script /var/run/google.startup.script
    <source>
      type tail
      format syslog
      path /var/log/startupscript.log
      pos_file /var/log/es-startupscript.log.pos
      tag startupscript
    </source>

    <source>
      type tail
      format /^time="(?<time>[^)]*)" level=(?<severity>[^ ]*) msg="(?<message>[^"]*)"( err="(?<error>[^"]*)")?( statusCode=($<status_code>\d+))?/
      path /var/log/docker.log
      pos_file /var/log/es-docker.log.pos
      tag docker
    </source>

    <source>
      type tail
      # Not parsing this, because it doesn't have anything particularly useful to
      # parse out of it (like severities).
      format none
      path /var/log/etcd.log
      pos_file /var/log/es-etcd.log.pos
      tag etcd
    </source>

    # Multi-line parsing is required for all the kube logs because very large log
    # statements, such as those that include entire object bodies, get split into
    # multiple lines by glog.

    # Example:
    # I0204 07:32:30.020537    3368 server.go:1048] POST /stats/container/: (13.972191ms) 200 [[Go-http-client/1.1] 10.244.1.3:40537]
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/kubelet.log
      pos_file /var/log/es-kubelet.log.pos
      tag kubelet
    </source>

    # Example:
    # I1118 21:26:53.975789       6 proxier.go:1096] Port "nodePort for kube-system/default-http-backend:http" (:31429/tcp) was open before and is still needed
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/kube-proxy.log
      pos_file /var/log/es-kube-proxy.log.pos
      tag kube-proxy
    </source>

    # Example:
    # I0204 07:00:19.604280       5 handlers.go:131] GET /api/v1/nodes: (1.624207ms) 200 [[kube-controller-manager/v1.1.3 (linux/amd64) kubernetes/6a81b50] 127.0.0.1:38266]
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/kube-apiserver.log
      pos_file /var/log/es-kube-apiserver.log.pos
      tag kube-apiserver
    </source>

    # Example:
    # I0204 06:55:31.872680       5 servicecontroller.go:277] LB already exists and doesn't need update for service kube-system/kube-ui
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/kube-controller-manager.log
      pos_file /var/log/es-kube-controller-manager.log.pos
      tag kube-controller-manager
    </source>

    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/kube-scheduler.log
      pos_file /var/log/es-kube-scheduler.log.pos
      tag kube-scheduler
    </source>

    # Example:
    # I1104 10:36:20.242766       5 rescheduler.go:73] Running Rescheduler
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/rescheduler.log
      pos_file /var/log/es-rescheduler.log.pos
      tag rescheduler
    </source>

    # Example:
    # I0603 15:31:05.793605       6 cluster_manager.go:230] Reading config from path /etc/gce.conf
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/glbc.log
      pos_file /var/log/es-glbc.log.pos
      tag glbc
    </source>

    # Example:
    # I0603 15:31:05.793605       6 cluster_manager.go:230] Reading config from path /etc/gce.conf
    <source>
      type tail
      format multiline
      multiline_flush_interval 5s
      format_firstline /^\w\d{4}/
      format1 /^(?<severity>\w)(?<time>\d{4} [^\s]*)\s+(?<pid>\d+)\s+(?<source>[^ \]]+)\] (?<message>.*)/
      time_format %m%d %H:%M:%S.%N
      path /var/log/cluster-autoscaler.log
      pos_file /var/log/es-cluster-autoscaler.log.pos
      tag cluster-autoscaler
    </source>

    # Logs from systemd-journal for interesting services.
    <source>
      type systemd
      filters [{ "_SYSTEMD_UNIT": "docker.service" }]
      pos_file /var/log/gcp-journald-docker.pos
      read_from_head true
      tag docker
    </source>

    <source>
      type systemd
      filters [{ "_SYSTEMD_UNIT": "kubelet.service" }]
      pos_file /var/log/gcp-journald-kubelet.pos
      read_from_head true
      tag kubelet
    </source>

    <source>
      type systemd
      filters [{ "_SYSTEMD_UNIT": "node-problem-detector.service" }]
      pos_file /var/log/gcp-journald-node-problem-detector.pos
      read_from_head true
      tag node-problem-detector
    </source>
  forward.input.conf: |-
    # Takes the messages sent over TCP
    <source>
      type forward
    </source>
  monitoring.conf: |-
    # Prometheus Exporter Plugin
    # input plugin that exports metrics
    <source>
      @type prometheus
    </source>

    <source>
      @type monitor_agent
    </source>

    # input plugin that collects metrics from MonitorAgent
    <source>
      @type prometheus_monitor
      <labels>
        host ${hostname}
      </labels>
    </source>

    # input plugin that collects metrics for output plugin
    <source>
      @type prometheus_output_monitor
      <labels>
        host ${hostname}
      </labels>
    </source>

    # input plugin that collects metrics for in_tail plugin
    <source>
      @type prometheus_tail_monitor
      <labels>
        host ${hostname}
      </labels>
    </source>
  output.conf: |-
    <filter kubernetes.**>
      type kubernetes_metadata
    </filter>

    <match **>
       type elasticsearch
       log_level info
       include_tag_key true
       host elasticsearch-logging
       port 9200
       logstash_format true
       buffer_chunk_limit 2M
       buffer_queue_limit 8
       flush_interval 5s
       max_retry_wait 30
       disable_retry_limit
       num_threads 2
    </match>
metadata:
  name: fluentd-es-config-v0.1.1
  namespace: kube-system
  labels:
    addonmanager.kubernetes.io/mode: Reconcile

fluentd-es.yaml

[root@server efk]# cat fluentd-es-ds.yaml 
apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd-es
  namespace: kube-system
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
  - ""
  resources:
  - "namespaces"
  - "pods"
  verbs:
  - "get"
  - "watch"
  - "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd-es
  labels:
    k8s-app: fluentd-es
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
  name: fluentd-es
  namespace: kube-system
  apiGroup: ""
roleRef:
  kind: ClusterRole
  name: fluentd-es
  apiGroup: ""
---
apiVersion: apps/v1beta2
kind: DaemonSet
metadata:
  name: fluentd-es-v2.0.2
  namespace: kube-system
  labels:
    k8s-app: fluentd-es
    version: v2.0.2
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  selector:
    matchLabels:
      k8s-app: fluentd-es
      version: v2.0.2
  template:
    metadata:
      labels:
        k8s-app: fluentd-es
        kubernetes.io/cluster-service: "true"
        version: v2.0.2
      # This annotation ensures that fluentd does not get evicted if the node
      # supports critical pod annotation based priority scheme.
      # Note that this does not guarantee admission on the nodes (#40573).
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ''
    spec:
      serviceAccountName: fluentd-es
      containers:
      - name: fluentd-es
        #image: gcr.io/google-containers/fluentd-elasticsearch:v2.0.2
        #image: mirrorgooglecontainers/fluentd-elasticsearch:v2.0.2
        image: 192.168.22.8/efk/fluentd-elasticsearch:v2.0.2
        env:
        - name: FLUENTD_ARGS
          value: --no-supervisor -q
        resources:
          limits:
            memory: 500Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
        - name: libsystemddir
          mountPath: /host/lib
          readOnly: true
        - name: config-volume
          mountPath: /etc/fluent/config.d
      nodeSelector:
        beta.kubernetes.io/fluentd-ds-ready: "true"
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
      # It is needed to copy systemd library to decompress journals
      - name: libsystemddir
        hostPath:
          path: /usr/lib64
      - name: config-volume
        configMap:
          name: fluentd-es-config-v0.1.1

创建fluentd POD

[root@server efk]# kubectl create -f ./fluentd-es-configmap.yaml fluentd-es-ds.yaml

注意:Fluentd 是以 DaemonSet 形式运行且只会调度到有beta.kubernetes.io/fluentd-ds-ready=true标签的节点,所以对需要收集日志的节点逐个打上标签:

[root@server efk]# kubectl label nodes 192.168.22.12 beta.kubernetes.io/fluentd-ds-ready=true
node "192.168.22.12" labeled

查看是否创建成功

[root@server efk]# kubectl get pod -n kube-system  |grep fluentd
fluentd-es-v2.0.2-9ttr5                 1/1       Running   0          23h
fluentd-es-v2.0.2-fsdwp                 1/1       Running   0          23h
fluentd-es-v2.0.2-k9ghs                 1/1       Running   0          23h

四、访问 kibana

因kibana启动需要很长时间 ,必须要看到kibana的日志里显示 启动成功 ,方可访问

kubectl logs -n kube-system kibana-logging-69c8b74dc7-m7n84 -f

Kubernetes 1.11.3上使用动态PV部署EFK 6.4.0


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品经理修炼之道

产品经理修炼之道

费杰 / 机械工业出版社华章公司 / 2012-7-30 / 59.00元

本书由资深产品经理、中国最大的产品经理沙龙Pmcaff创始人费杰亲自执笔,微软、腾讯、百度、新浪、搜狐、奇虎、阿里云、Evernote等国内外20余家大型互联网企业资深产品经理和技术专家联袂推荐。用系统化的方法论和丰富的实战案例解读了优秀产品经理所必须修炼的产品规划能力、产品设计能力、产品执行能力,以及思考、分析和解决问题的能力和方法,旨在为互联网产品经理打造核心竞争力提供实践指导。 全书一......一起来看看 《产品经理修炼之道》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码