内容简介:上一篇主要介绍了MongoDB的基本操作,包括创建、插入、保存、更新和查询等,链接为MongoDB基本操作。在本文中主要介绍MongoDB的聚合以及与Python的交互。MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。
上一篇主要介绍了 MongoDB 的基本操作,包括创建、插入、保存、更新和查询等,链接为MongoDB基本操作。
在本文中主要介绍MongoDB的聚合以及与 Python 的交互。
MongoDB聚合
什么是聚合
MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。
聚合是基于数据处理的聚合管道,每个文档通过由多个阶段组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列处理,输出结果。
语法: db.集合名称.aggregate({管道: {表达式}})
管道一般用于将当前命令的输出结果作为下一个命令的参数。
MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。
常用管道
下面介绍常用的管道:
$group $match $project $sort $limit $skip $unwind
常用聚合表达式
下面介绍常用的聚合表达式:
-
$sum:计算总和,$sum:1表示以1计数 -
$avg:计算平均值 -
$min:获取最小值 -
$max:获取最大值 -
$push:在结果文档中插入值到一个数组中 -
$first:根据资源文档的排序,获取第一个文档数据 -
$last:根据资源文档的排序,获取最后一个文档数据
MongoDB聚合实例
现在假设集合 studen 中有以下数据:
{ "_id" : 1, "name" : "小然", "gender" : 1, "age" : 22, "score" : 95 }
{ "_id" : 2, "name" : "小红", "gender" : 0, "age" : 18, "score" : 80 }
{ "_id" : 3, "name" : "小亮", "gender" : 1, "age" : 19, "score" : 60 }
{ "_id" : 4, "name" : "小强", "gender" : 1, "age" : 23, "score" : 70 }
{ "_id" : 5, "name" : "小柔", "gender" : 0, "age" : 20, "score" : 85 }
{ "_id" : 6, "name" : "小雷", "gender" : 1, "age" : 25, "score" : 65 }
{ "_id" : 7, "name" : "小冉", "gender" : 0, "age" : 19, "score" : 70 }
{ "_id" : 8, "name" : "小晴", "gender" : 0, "age" : 18, "score" : 90 }
{ "_id" : 9, "name" : "小齐", "gender" : 1, "age" : 24, "score" : 50 }
- 以性别进行分组
db.students.aggregate({$group:{_id:"$gender"}})
输出结果为:
- 统计整个文档,获得数据个数和平均分数
db.students.aggregate({$group:{
_id:null,
count:{$sum:1},
avg_score:{$avg:"$score"}
}})
输出结果为:
- 以性别进行分组,获取不同分组中数据的个数和平均分数
db.students.aggregate({$group:{
_id:"$gender",
count:{$sum:1},
avg_score:{$avg:"$score"}
}})
输出结果为:
- 使用
$project修改输出结果
db.students.aggregate(
{$group:{
_id:"$gender",
count:{$sum:1},
avg_score:{$avg:"$score"}}
},
{$project:{
gender:"$_id",
count:1,
_id:0,
avg_score:"$avg_score"}
}
)
输出结果为:
- 使用
$match选择分数大于等于70的学生,统计男生、女生的人数
db.students.aggregate(
{$match:{score:{$gte:70}}},
{$group:{_id:"$gender",count:{$sum:1}}},
{$project:{gender:"$_id",count:1,_id:0}}
)
输出结果为:
MondoDB与Python的交互
pymongo的安装
使用Python操作MongoDB需要安装 pymongo ,安装方法很简单,使用 pip install pymongo 即可。
实例化并建立连接
首先从 pymongo 中导入 MongoClient ,然后实例化 client ,建立连接,代码如下:
from pymongo import MongoClient
client = MongoClient(host = "127.0.0.1",port = 27017)
#操作本机MongoDB可以写成client = MongoClient()
collection = client["test"]["test"]
常用操作实例
- 插入一条数据
collection.insert_one({"_id":0,"name":"test0"})
- 插入多条数据
data_list = [{"_id":i,"name":"test{}".format(i)} for i in range(10)]
collection.insert_many(data_list)
data_list = [{"name":"test{}".format(i)} for i in range(10)]
collection.insert_many(data_list)
插入后结果如下图所示, 下面的操作都在此数据库上进行操作。
- 查询一条记录
print(collection.find_one({"name":"test2"}))
输出结果为:
- 查询所有记录
result = collection.find({"name":"test2"})
for i in result:
print(i)
输出结果为:
- 更新一条数据
collection.update_one({"name":"test1"},{"$set":{"name":"test10"}})
执行完操作后,数据库如下图所示:
- 更新全部数据
collection.update_many({"name":"test2"},{"$set":{"name":"test20"}})
执行完操作后,数据库如下图所示:
- 删除一条数据
collection.delete_one({"name":"test3"})
执行完操作后,数据库如下图所示:
- 删除所有满足条件的数据
collection.delete_many({"name":"test4"})
执行完操作后,数据库如下图所示:
结语
- 本篇主要介绍了MongoDB的聚合操作以及与Python的交互,但对于我目前的学习阶段来说,只用到了Python中的插入数据语句,其他的操作基本没有用到。
- 感谢大家的阅读,有错误希望大家能够指出,我会积极改正。
以上所述就是小编给大家介绍的《MongoDB的聚合操作以及与Python的交互》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 监控聚合器系列之: open-falcon新聚合器polymetric
- elasticsearch学习笔记(七)——快速入门案例实战之电商网站商品管理:嵌套聚合,下钻分析,聚合分析
- mongodb高级聚合查询
- MongoDB聚合(aggregate)
- mongodb 聚合管道
- MongoDB指南---16、聚合
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深入浅出Tapestry
董黎伟 / 电子工业出版社 / 2007-3 / 49.0
本书以循序渐进的方式,从Tapestry框架技术的基本概念入手,讲解Tapestry框架在J2EE Web应用程序中的整体架构实现。使读者在学习如何使用Tapestry框架技术的同时,还能够获得在J2EE Web应用程序中应用Tapestry框架的先进经验。 本书详细介绍了Hivemind框架的原理与应用,使读者不但可以通过Hivemind来重构Tapestry的官方实现,还可以使用Hive......一起来看看 《深入浅出Tapestry》 这本书的介绍吧!