内容简介:DeepMind、OpenAI 和暴雪对于星际争霸 2 人工智能的研究仍在进行中,面对复杂的即时战略游戏,人们目前还鲜有进展。尽管近期Reaver 是一个模块化的深度强化学习框架,可提供比大多数开源解决方案更快的单机并行化能力,支持星际争霸 2、OpenAI Gym、Atari、MuJoCo 等常见环境,其网络被定义为简单的 Keras 模型,易于配置和共享设置。在示例中,Reaver 在不到 10 秒钟内通过了 CartPole-v0 游戏,在 4 核 CPU 笔记本上每秒采样率为 5000 左右。
DeepMind、OpenAI 和暴雪对于星际争霸 2 人工智能的研究仍在进行中,面对复杂的即时战略游戏,人们目前还鲜有进展。尽管近期 腾讯 、南大、 伯克利 等均在星际 II 上攻克了全场游戏,但其训练规模并不是个体研究者所能 handle 的。最近,来自 University of Tartu 的 Roman Ring 开源了首个星际争霸 2 的智能体项目,我们也可以在这个前沿领域里展开自己的研究了。
Reaver 是一个模块化的深度强化学习框架,可提供比大多数开源解决方案更快的单机并行化能力,支持星际争霸 2、OpenAI Gym、Atari、MuJoCo 等常见环境,其网络被定义为简单的 Keras 模型,易于配置和共享设置。在示例中,Reaver 在不到 10 秒钟内通过了 CartPole-v0 游戏,在 4 核 CPU 笔记本上每秒采样率为 5000 左右。
Reaver 可以在 30 分钟内攻克星际争霸 2 的 MoveToBeacon 小游戏,和 DeepMind 得到的结果相当,仅使用了配置 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本,你也可以在 Google Colab 上在线跑跑对比一下。
-
Reaver 的 Google Colab 地址: https://colab.research.google.com/drive/1DvyCUdymqgjk85FB5DrTtAwTFbI494x7
具体来说,Reaver 具备以下特征:
性能:现有研究的多数强化学习基线通常针对进程之间基于消息的通信(如 MPI)进行调整。这对于 DeepMind、OpenAI 等拥有大规模分布式 RL 设置的公司来说是有意义的,但对于只拥有一个计算机/HPC 节点的研究人员或发烧友来说,这似乎是一个很大的瓶颈。因此,Reaver 采用了共享内存,与之前基于消息的并行化的项目相比,速度提升了 2 倍。具体来说,Reaver 通过 lock-free 的方式利用共享内存,可以专门针对这种情况优化。这种方法可以在星际争霸 II 采样率上速度提升了 2 倍(在一般情况下可以实现 100 倍的加速),其最主要的瓶颈在于 GPU 的输入/输出管道。
模块化:许多 RL 基线或多或少都是模块化的,但经常紧紧地与作者使用的模型/环境耦合。以我个人经验来看,当我只专注于星际争霸 2 游戏时,每一次实验或调试都是一个令人沮丧的长期过程。而有了 Reaver 之后,我就能够在一行代码中交换环境(即使是从 SC2 到雅达利或 CartPole)。对于模型来说也是如此——任何 Keras 模型都可以,只要它遵守基本 API 契约(inputs = agent obs, outputs = logits + value)。Reaver 的三个核心模块 envs、models、 和 agents 基本上是完全独立的。这保证了在一个模块上的功能扩展可以无缝地连接到其它模块上。
可配置性:现有的智能体通常具有几十个不同的配置参数,共享这些参数似乎让每一个参与其中的人都很头疼。我最近偶然发现了这个问题的一个有趣的解决方案——gin-config,它支持将任意 Python 可调用函数配置为类似 Python 的配置文件和命令行参数。试验后发现 gin-config 可以实现仅用一个文件共享全部训练流程环境配置。所有的配置都能轻松地以.gin 文件的形式进行分享,包括所有超参数、环境变量和模块定义。
不过时:DL 中充满变数,即使只有一年历史的代码库也会过时。我使用即将面世的 TensorFlow 2.0 API 写 Reaver(大多使用 tf.keras,避开 tf.contrib),希望 Reaver 不会遭此厄运。
Reaver 的用途并不局限于星际争霸 II 智能体的深度强化学习训练,如果有任何扩展的想法欢迎分享给我。我计划近期添加 VizDoom 环境到这个项目中去。
python -m reaver.run --env MoveToBeacon --agent a2c --envs 4 2> stderr.log
只需通过一行代码,Reaver 就可以直接配置一个训练任务,如上所示。Reaver 的奖励函数可以很快收敛到大约 25-26RMe(mean episode rewards),这和 DeepMind 在该环境(MoveToBeacon)中得到的结果相当。具体的训练时间取决于你自己的硬件。以下日志数据是通过配置了 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本训练了 30 分钟得到的。
| T 118 | Fr 51200 | Ep 212 | Up 100 | RMe 0.14 | RSd 0.49 | RMa 3.00 | RMi 0.00 | Pl 0.017 | Vl 0.008 | El 0.0225 | Gr 3.493 | Fps 433 | | T 238 | Fr 102400 | Ep 424 | Up 200 | RMe 0.92 | RSd 0.97 | RMa 4.00 | RMi 0.00 | Pl -0.196 | Vl 0.012 | El 0.0249 | Gr 1.791 | Fps 430 | | T 359 | Fr 153600 | Ep 640 | Up 300 | RMe 1.80 | RSd 1.30 | RMa 6.00 | RMi 0.00 | Pl -0.035 | Vl 0.041 | El 0.0253 | Gr 1.832 | Fps 427 | ... | T 1578 | Fr 665600 | Ep 2772 | Up 1300 | RMe 24.26 | RSd 3.19 | RMa 29.00 | RMi 0.00 | Pl 0.050 | Vl 1.242 | El 0.0174 | Gr 4.814 | Fps 421 | | T 1695 | Fr 716800 | Ep 2984 | Up 1400 | RMe 24.31 | RSd 2.55 | RMa 30.00 | RMi 16.00 | Pl 0.005 | Vl 0.202 | El 0.0178 | Gr 56.385 | Fps 422 | | T 1812 | Fr 768000 | Ep 3200 | Up 1500 | RMe 24.97 | RSd 1.89 | RMa 31.00 | RMi 21.00 | Pl -0.075 | Vl 1.385 | El 0.0176 | Gr 17.619 | Fps 423 |
在 MoveToBeacon 环境上的 RMe 学习曲线。
基准评测分数
其中:
-
Human Expert 是由 DeepMind 从战网天梯的大师级玩家中收集的数据
-
DeepMind ReDRL 是当前业内最佳结果,出自 DeepMind 2018 年 6 月的论文《 Relational Deep Reinforcement Learning 》
-
DeepMind SC2LE 成绩出自 DeepMind 和暴雪 2017 年 8 月的论文《StarCraft II: A New Challenge for Reinforcement Learning》
-
Reaver(A2C)是通过训练 reaver.agents.A2C 智能体获得的结果,其在硬件上尽可能复制 SC2LE 的架构。通过训练智能体 --test 模组 100 个迭代,计算总奖励值,收集结果。表中列出的是平均值、标准差(在括号中),以及最小&最大值(在方括号中)。
训练细节,注意这些训练时间都是在配置了 Intel i5-7300HQ CPU (4 核) 和 GTX 1050 GPU 的笔记本上得到的。我并没有花费太多时间来调超参数,而是先展示其可学习性,但至少在 MoveToBeacon 环境中,我已经显著地降低了训练样本数。
不同环境下的 RMe 学习曲线和标准差。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 2018 AIIDE星际争霸AI挑战赛亚军CherryPi开源TorchCraftAI
- 星际争霸:打响分布式共享存储第一战
- DeforGAN:用GAN实现星际争霸开全图外挂!
- 多图详解 DeepMind 的超人类水准星际争霸 AI 「AlphaStar」
- 伯克利星际争霸II AI「撞车」腾讯,作者:我们不一样
- 首次!腾讯的人工智能在星际争霸2中打败了「开挂」内建AI
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Machine Learning in Action
Peter Harrington / Manning Publications / 2012-4-19 / GBP 29.99
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. ......一起来看看 《Machine Learning in Action》 这本书的介绍吧!