基于机器学习的分布式webshell检测系统

栏目: 后端 · 发布时间: 8年前

内容简介:基于机器学习的分布式webshell检测系统

fshell 基于机器学习的分布式webshell检测系统

1. 项目简介

该项目从web服务器日志、统计学分析、文件属性分析、静态特征检测以及文件fuzz hash的检测这5个维度对webshell进行了基于支持向量机(SVM)和决策树(DT)的监督学习的机器学习算法,从而分类出支持文件和恶意webshell。 通过在业务web server上安装agent,将采集到的数据定时/实时传输到Server端,经过对采集的元数据加工处理,形成机器学习算法可以处理的特征向量化数据。在机器学习模块将采用SVM和决策树进行机器学习,形成针对webshell的二分类,达到检测效果。

2. 项目整体架构

fshell系统逻辑架构 基于机器学习的分布式webshell检测系统

fshell 模块功能说明

  • fs_agent模块:fshell的agent模块,主要实现:(1)对web_log, statistics, file_attribute, danger_func, fuzz_hash元数据的采集,并发送到fs_server;(2)对server下发到agent配置信息进行更新;(3)读取server的文件读取指令,并将文件内容回传给server。

  • fs_server模块:fshell在Server端的数据通信模块,该模块采用TCP socket 长连接和短连接的方式,监听3个端口。与agent模块实现:元数据data_srv接收入库,配置更新下发,agent上文件读取回传三个功能。

  • fs_stand_srv模块:fshell的标准化srv模块,主要实现对已经入库的元数据进行特征向量化处理,使机器学习算法能够直接使用。

  • fs_kernel模块:fshell的机器学习算法的核心模块。该模块采用支持向量机(SVM)和决策树(DT)等算法对特征向量进行监督学习,从而实现webshell与正常文件的分类。

  • fs_manager模块:fshell的主控制模块。该模块实现:对agent配置管理;用户UI的管理;样本特征库的管理;机器学习检测模块相关配置以及结果的管理;以及其他预警通知、文件传输等的管理。

3. 相关博文链接


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Node.js开发指南

Node.js开发指南

郭家寶(BYVoid) / 人民邮电出版社 / 2012-7 / 45.00元

Node.js是一种方兴未艾的新技术,诞生于2009年。经过两年的快速变化,Node.js生态圈已经逐渐走向稳定。Node.js采用了以往类似语言和框架中非常罕见的技术,总结为关键词就是:非阻塞式控制流、异步I/O、单线程消息循环。不少开发者在入门时总要经历一个痛苦的思维转变过程,给学习带来巨大的障碍。 而本书的目的就是帮助读者扫清这些障碍,学会使用Node.js进行Web后端开发,同时掌握事件驱......一起来看看 《Node.js开发指南》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具