内容简介:在在构建倒排索引的过程中,Lucene需要收集每个Term在整个Segment中的相关信息(DocID、TermFreq、Position、Offset、Payload),并且将这些信息存储下来,如下图所示。因此,在索引阶段,如何高效的收集这些信息,显得至关重要,本文将以Postings索引格式为例,详细探讨Lucene索引过程中所采用的数据结构与技术手段。
在 Lucene倒排索引原理探秘(1) 和 Lucene倒排索引原理探秘(2) 两篇文章中详细介绍了Lucene的倒排索引文件组织结构,这为高效的搜索过程奠定了良好的基础。
我们已经知道,Lucene的倒排索引有两种格式:一种是用于搜索的Postings ;另一种是TermsVectors 。这两种索引的构建过程基本相同,只是写文件时在编排方式上有所差异,在《 番外篇:Lucene索引流程与倒排索引实现 》一文中已经做了详细介绍。
在构建倒排索引的过程中,Lucene需要收集每个Term在整个Segment中的相关信息(DocID、TermFreq、Position、Offset、Payload),并且将这些信息存储下来,如下图所示。因此,在索引阶段,如何高效的收集这些信息,显得至关重要,本文将以Postings索引格式为例,详细探讨Lucene索引过程中所采用的数据结构与技术手段。
1 数据结构
Lucene设计了一系列内存高效的数据结构,通过 对象复用 和 内存分页 的思想,来优化Java GC问题。这部分内容将围绕 ByteBlockPool 、 ByteRefHash 、 PostingsArray 三个结构展开。
ByteBlockPool
ByteBlockPool是Lucene实现 高效的可变长的基本类型数组 ,但实际上数组一旦初始化之后长度是固定的,因为数组申请的内存必须是连续分配的,以致能够提供快速随机访问的能力。那么ByteBlockPool是如何实现的?
Buffer结构
在JDK中,以数组为底层存储的数据结构,如ArrayList/HashMap,实现可增长时都需要花费一定的代价。数组增长的过程分两步,首先申请更大数组,然后将原数组复制到新数组中。即使JVM已经对数组拷贝做了很多优化,但随着数据量的不断增大,拷贝的性能开销问题也会越来越凸显,同时,数组的频繁创建也都会加大JVM的GC负担。
ByteBlockPool是一个可动态增长的结构,如下图所示:
ByteBlockPool是一个由多个Buffer构成的数组,如上图右侧所示,左侧的数字则代表了每一个Buffer在这个二维数组中的Index位置。Buffer的长度是固定的,当一个Buffer被写满以后,需要申请一个新的Buffer,如果这个Buffer数组要扩展,仅仅是将已有Buffer的引用拷贝了一次,而不需要拷贝数据本身。Buffer本质上是一个byte[],因此,ByteBlockPool其实是一个byte的二维数组,用Buffer数组来表达则更易理解。
Slice链表
索引构建过程需要为每个Term分配一块相对独立的空间来存储Posting信息。一个Term可能会出现在几个文档中,而且在每个文档出现的次数和位置都无法确定,所以Lucene无法预知Term需要多大的数组来存储Posting信息。
为此Lucene在ByteBlockPool之上设计了可变长的逻辑结构,这结构就是 Slice链表 。它的节点称之为Slice,Lucene将Slice分成十个级别,逐层递增,十层之后长度恒定。Slice的最后一个位置用于存储下个节点Offset,对于最后一个Slice,则存储了下个Slice的层级数。
Slice节点可以跨越多个Buffer, Slice链表为我们提供了一个逻辑上连续的内存块 。如果将Slice链表理解成类分布式文件系统上的文件,每个Slice则是文件的数据块,不过文件系统的数据块的大小是固定的,而Slice的长度则是分层级的。
这种设计方案的一个好处:Buffer是相对比较紧凑的结构,能够更高效的利用Buffer内存。按Zipf定律可知一个单词出现的次数与它在频率表里的排名成反比,也就是说可能会有很多Term的频率是很低的,同样也有小部分Term的频率则非常高,Slice的设计正是考虑到了这一分布特点。
ByteBlockPool与IntBlockPool设计思想完全一样,IntBlockPool只能存储int,ByteBlockPool存储byte,这里我们不再赘述。Lucene仅实现这两种基础的数据类型,其它的类型可以通过编码之后用ByteBlockPool来存储。
BytesRefHash
Lucene在构建Postings的时候, 采用一种类似HashMap结构,这个类HashMap的结构便是BytesRefHash,它是一个非通用的Map实现。 它的非通用性表现在BytesRefHash存储的键值对分别是Term和TermID,其次它并没有实现Map接口,也没有实现Map的相关操作。
Term在Lucene中通常会被表示为BytesRef,而BytesRef的内部是一个byte[],这是一个可以复用的对象。当通过TermID在BytesRefHash获取词元的时候,便将ByteBlockPool的byte[]拷贝到BytesRef的byte[],同时指定有效长度。整个BytesRefHash生存周期中仅持有一个BytsRef,所以该BytesRef的byte[]长度是词元的长度。
BytesRefHash用来存储Term和TermID之间的映射关系,如果Term已经存在,返回对应TermID;否则将Term存储并且生成TermID后返回。Term在存储过程BytesRefHash将BytesRef的有效数据拷贝在ByteBlockPool上,从而实现紧凑的key值存储。TermID是从0开始自增长的连续数值,存储在int[]上。BytesRefHash非散列哈希表,从而TermID的存储也是紧凑的。
因为BytesRefHash为了尽可能避免用到对象类型,所以直接采用int[]存储TermID,实际上也就很难直接采用散列表的数据结构来解决HashCode冲突的问题。
Lucene构建倒排索引的过程分了两步操作,构建Postings和TermVectors。它们俩过程共享一个ByteBlockPool,也就是在每个 DocumentsWriter
共用同一个ByteRefHash(因为BytesRefHash以ByteBlockPool都不是线程安全的)。 它为Postings收集过程提供去重和Term与TermID对应关系的存储及检索等功能。
3. PostingsArrays
从PostingsArrays名字上容易被误以为是存储Postings数据的结构,实则不然。在Postings构建过程中,Lucene将各项信息写到ByteBlockPool的Slice链表上。链表是单向链表,它的表头和表尾存储到PostingsArrays,从而能够快速写入,并且可以从头开始遍历。这个结构曾在《 番外篇:Lucene索引流程与倒排索引实现 》 一文中 介绍过。
PostingsArrays除了记录了Slice链表的索引之外,它还存储上个文档的DocID和TermFreq,还有Term上次出现的位置和偏移信息。PostingsArrays由几个int[]组成,其下标都是TermID(TermID是连续分配的整数),对应的值便是记录TermID上一次出现的各种信息。
Lucene为了能够直接使用基本类型数据,所以才有了PostingsArrays结构。方便理解你可以理解成是Postings[],每个Postings对象含有DocId,TermFreq,intStarts,lastPosition等属性。
2
索引构建过程
在索引构过程中,Term由TextField经过TokenStream处理之后产生,它由一个可复用对象BytesRef表示。在建构索引的链路上,Lucene更多是用TermID来表示Term。
当Term第一次出现时,Lucene尝试在BytesRefHash取到TermID失败,此时Lucene将它的状态标记" 新人"
。新出现的Term作为"新人",需要在BytesRefHash上为它分配一个"证件号码"(TermID)。在PostingsArrays中会登记他的"户籍信息",包含他的名字(BytesRef的byte[])在哪个位置(前面提过,BytesRefHash直接把Term存储在ByteBlockPool上,所以需要把位置记下来);还会为他建立一个履历档案(第一Slice链表),记录他将来在每个年级(DocID)的考试次数(TermFreq)。
在每一个"地区",还可以为Term建立另外一份档案(第二Slice链表)用于记录每次考试的情况,比如班级(Position),座位号(Offset),以及成绩(Payload)。这些数据是Term成长过程的产生,经历一次记一次。关于每次考试的情况,第一次考试Lucene直接把它写入ByteBlockPool的Slice链表上,同时会记录增量信息,为了节省内存空间,Position/Offset第二次及以后都用VInt来记录这个增量值。
这就是PostingsArrays需要记录lastPosition/lastOffset的原因,而lastDocID和lastTermFreq不仅可用计算增量,还可以用来计算Term每次出现后TermFreq的累加值。需要说明的一点: 每个信息在Slice中没有索引,不方便回溯和修改。
构建索引的过程是ByteBlockPool(IntBlockPool)、BytesRefHash和PostingsArrays三者之间的协作,如下图所示:
这里为了简化流程,图中将IntBlockPool简化成为int[],也就是说它也是Slice的方式实现连续的链表。
PostingsArrays的 byteStarts[TermID]
记录Term的两个链表的表头在ByteBlockPool的绝对位置, intStarts[TermID]
记录下次要写的位置,则 textStarts[TermID]
则记录BytesRefHash把Term存储在ByteBlockPool的哪个位置上。
为什么byteStart和intStart需要先指向IntBlockPool呢? 主要是因为TermID可能对应了两条Slice链表,以TermID为索引的数组不方便存储。通过IntBlockPool可以方便处理,仅需要IntBlockPool连续两个位置,下一个位置用于存储第两个Slice链表。IntBlockPool的引入虽然让这个过程变得更复杂了,但也更体现了Lucene的设计之精湛和巧妙。
在索引提交的时候,Lucene将这两个Slice链表的数据通过PostingsEnum遍历出来,交由BlockTreeTermsWriter完成索引文件的输出。至此,已经完成了一轮构建索引的流程。
关于"NoSQL漫谈"
NoSQL主要泛指一些分布式的 非关系型数据存储 技术,这其实是一个 非常广泛 的定义,可以说涉及到分布式系统技术的方方面面。随着 人工智能 、 物联网 、 大数据 、 云计算 以及 区块链 技术的不断普及, NoSQL 技术将会发挥越来越大的价值。
请长按下面的二维码关注我们
更多NoSQL技术分享,敬请期待!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Mysql-高性能索引
- 「MySQL」高性能索引优化策略
- MySQL索引使用说明(单列索引和多列索引)
- Elasticsearch索引的基本操作(3)-索引的滚动索引
- Coreseek 增量索引模拟实时索引
- Coreseek 增量索引模拟实时索引
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Design Accessible Web Sites
Jeremy Sydik / Pragmatic Bookshelf / 2007-11-05 / USD 34.95
It's not a one-browser web anymore. You need to reach audiences that use cell phones, PDAs, game consoles, or other "alternative" browsers, as well as users with disabilities. Legal requirements for a......一起来看看 《Design Accessible Web Sites》 这本书的介绍吧!