勿忘初心 前天 15:11
欢迎访问 网易云社区 ,了解更多网易技术产品运营经验。
这篇博文主要的内容不是分析说明kudu的性能指标情况,而是分析为什么kudu的scan性能会这么龊!当初对外宣传可是加了各种 逆天黑科技的呀:列独立存储、bloom filter、压缩、原地修改、b+tree、mvcc ... ...
这里先贴个kudu和parquet小部分的TPCDS测试结果对比图吧:
没有对比就没有伤害,有了对比就有了乐趣。纵坐标是耗时,单位是秒,代表kudu的黄色柱子太高了,说人话就是kudu耗时太 长,性能太差!
老大:为什么kudu性能会这么差? 本人:我不清楚 ... ...
当时真的不知道原因,前前后后忙着测试,急着获取测试指标,还来不及分析,何况还是两个陌生的大系统:impala和kudu,很 是尴尬:(
等到TPCDS测试用例全部跑完以后,有一个空档期,就花了几天时间来找原因,阅读资料、翻文档、google来google去,过程这 里不再叙述,下面着重描述下原因吧。
我们知道impala有个交互式的管理工具impala-shell,它有个profile命令,在每次执行完 sql 以后执行它,可以获取到这个sql的执 行计划及每个点的耗时统计。因为测试kudu和parquet,计算引擎都用的是impala,所以是不是可以从这里面获取些信息?
所以我就拿了上图中对比比较明显的query7和query40做试验,分别对kudu和parquet执行了一遍,搜集了它们各自的profile,总 共有4个文件,然后拿来分析。可能你不信,profile的结果实在是太大了,1个文件接近1万行,你还有信心分析么?(query40的 profile见底下附件)当时我是一脸懵逼样,没办法,原因总得找,所以硬着头皮从头到尾的阅读。无意间,手贱,点开了以前经常 用来比对代码的beyond compare,把执行query40的两个profile(kudu和parquet)比对了下,一点点往下拉,在执行计划这一 段,居然真发现了宝!
两者扫描磁盘获取的结果集也不一样了!!难怪在比较测试过程中,kudu集群跑query的时候会有大量的磁盘IO和网络传输开销, 而parquet负荷比较低!你看懂了么?
为什么kudu没有runtime filter?于是去kudu的jira库搜索,好吧,没找到!那试试impala的jira库呢,还真找到了,Matthew Jacobs是cloudera公司impala/kudu的开发工程师,找到他的两个jira单: impala-3741 和 impala-4252
+
(正常情况应该是在userlist发邮件咨询,那么就当我帮他们测试了jira库的权限问题了=_=),再次确认下 是否支持。
后来又重新去阅读了kudu的官方documents,字里行间其实已经有些端倪的,只不过当时没有引起足够的重视:
至此,本文结束。希望大伙儿能从中吸取到一点经验,谢谢!
网易有数:企业级大数据可视化分析平台。面向业务人员的自助式敏捷分析平台,采用PPT模式的报告制作,更加易学易用,具备强大的探索分析功能,真正帮助用户洞察数据发现价值。 可点击这里免费试用 。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Rework
Jason Fried、David Heinemeier Hansson / Crown Business / 2010-3-9 / USD 22.00
"Jason Fried and David Hansson follow their own advice in REWORK, laying bare the surprising philosophies at the core of 37signals' success and inspiring us to put them into practice. There's no jarg......一起来看看 《Rework》 这本书的介绍吧!