redis个人理解4--hash对象的存储

栏目: 数据库 · 发布时间: 6年前

内容简介:众所周知,redis支持5种基础数据类型,分别是:每种数据类型都存在至少一种encoding方式。redis把上面几种基础类型抽象成为一个结构体叫做本文就重点介绍下hash类型在redis中是如何存储和使用的。

众所周知,redis支持5种基础数据类型,分别是:

  • string
  • list
  • set
  • hset
  • hash

每种数据类型都存在至少一种encoding方式。redis把上面几种基础类型抽象成为一个结构体叫做 redisObject

typedef struct redisObject {
    unsigned type:4;   //type就是 redis 的基础数据类型
    unsigned encoding:4;   //这个是具体数据类型的编码方式
    unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
                            * LFU data (least significant 8 bits frequency
                            * and most significant 16 bits access time). */
    int refcount;
    void *ptr;
} robj;

复制代码

本文就重点介绍下hash类型在redis中是如何存储和使用的。

2. redis hash类型

hash类型是一个可以存储多个k-v键值对的结构,典型的样子是这样的:

redis个人理解4--hash对象的存储

其实具体的命令查看redis的官方文档是最方便的,但是我还是把常用的总结下,也给自己加深下影响。

2.1 hash的典型命令

典型的命令格式:

hset redis-obj-name k1 v1 k2 v2 ...
hget redis_obj_name k1

注意这个命令是操作hash对象的, 和hset对象没有关系 ,不要搞混淆了。 例如:

redis> HSET myhash field1 "Hello"
(integer) 1
redis> HGET myhash field1
"Hello"
redis> 
复制代码

看上去很简单,那么这个myhash对象在redis的内存中是如何存储的呢?直接上源码,大家看的比较清楚:

void hsetCommand(client *c) {
    int i, created = 0;
    robj *o;

    //首先参数必须是双数,很好理解
    if ((c->argc % 2) == 1) {
        addReplyError(c,"wrong number of arguments for HMSET");
        return;
    }
   //函数名称写的很清楚,找不到就创建一个redis-obj对象
    if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
    hashTypeTryConversion(o,c->argv,2,c->argc-1);//这里是两点,它居然会尝试去转换下hash的type

    for (i = 2; i < c->argc; i += 2)
        created += !hashTypeSet(o,c->argv[i]->ptr,c->argv[i+1]->ptr,HASH_SET_COPY);

    /* HMSET (deprecated) and HSET return value is different. */
    char *cmdname = c->argv[0]->ptr;
    if (cmdname[1] == 's' || cmdname[1] == 'S') {
        /* HSET */
        addReplyLongLong(c, created);
    } else {
        /* HMSET */
        addReply(c, shared.ok);
    }
    signalModifiedKey(c->db,c->argv[1]);
    notifyKeyspaceEvent(NOTIFY_HASH,"hset",c->argv[1],c->db->id);
    server.dirty++;
}
复制代码

那我们看看 hashTypeLookupWriteOrCreatehashTypeTryConversion 到底干了啥事。

robj *hashTypeLookupWriteOrCreate(client *c, robj *key) {
    robj *o = lookupKeyWrite(c->db,key);
    if (o == NULL) {
        o = createHashObject();  //这里会去创建一个hash objecjt
        dbAdd(c->db,key,o);
    } else {
        if (o->type != OBJ_HASH) {
            addReply(c,shared.wrongtypeerr);
            return NULL;
        }
    }
    return o;
}

robj *createHashObject(void) {
    unsigned char *zl = ziplistNew();
    robj *o = createObject(OBJ_HASH, zl);
    o->encoding = OBJ_ENCODING_ZIPLIST;
    return o;
}

复制代码

看上面, createHashObject 函数其实创建的redis-obj的type是hash类型,但是encoding却是OBJ_ENCODING_ZIPLIST,看到这里会有点疑惑,既然是hash类型应该用hash table结构来存储,为什么用压缩链表结构呢?其实不用急,还有一个函数 hashTypeTryConversion 这个函数没有看,现在再看看它的实现:

/* Check the length of a number of objects to see if we need to convert a
 * ziplist to a real hash. Note that we only check string encoded objects
 * as their string length can be queried in constant time. */

void hashTypeTryConversion(robj *o, robj **argv, int start, int end) {
    int i;

    if (o->encoding != OBJ_ENCODING_ZIPLIST) return;

    for (i = start; i <= end; i++) {
        if (sdsEncodedObject(argv[i]) &&
            sdslen(argv[i]->ptr) > server.hash_max_ziplist_value)
        {
            hashTypeConvert(o, OBJ_ENCODING_HT);
            break;
        }
    }
}

复制代码

其实上面的注释写的很清楚,如果是ZIPLIST的编码方式,遍历下ziplist,如果当前的长度已经大于 server.hash_max_ziplist_value ,就把encoding方式改为 OBJ_ENCODING_HT 。还有一种情况是当

hash-max-ziplist-entries 512  
hash-max-ziplist-value 64
复制代码

看到这里貌似有点明白了,原来redis对于小数字,短字符串,为了能比较高效的利用内存,都保存到ziplist中,而不是直接放到hash-table结构中,当数字或者字符串超出一定的阈值时候,才会改用hash表的存储方式,这样达到节约内存的作用啊。在这里不得不感叹下redis的作者真不怕麻烦,为了能节约一点内存,可以说费劲了心思。

总结下,redis对于hash对象提供了两种存储方式,也就是 redisObject.encoding 变量的取值是有两个的,分别如下:

  • OBJ_ENCODING_ZIPLIST
  • OBJ_ENCODING_HT

这两种编码方式内部的数据结构是什么样子的呢? 首先我们先看看 OBJ_ENCODING_ZIPLIST 类型的存储方式

2.2 OBJ_ENCODING_ZIPLIST存储方式

createHashObject 函数中,调用了ziplist的创建函数 ziplistNew ,我们来看下这个函数的实现:

/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
    unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
    unsigned char *zl = zmalloc(bytes);
    ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
    ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
    ZIPLIST_LENGTH(zl) = 0;
    zl[bytes-1] = ZIP_END;
    return zl;
}

复制代码

代码里面用了一堆宏,看上去不太直观,画个图看下,就很清晰了:

redis个人理解4--hash对象的存储

再附上ziplist的header的注释:

/* The size of a ziplist header: two 32 bit integers for the total
 * bytes count and last item offset. One 16 bit integer for the number
 * of items field. */
复制代码

结合代码很轻松就应该能看懂了。

再看上面的代码 hsetCommand 中,调用了 hashTypeSet 函数进行插入数据 我们再看看对于 OBJ_ENCODING_ZIPLIST 的编码方式,如何插入数据。

int hashTypeSet(robj *o, sds field, sds value, int flags) {
    int update = 0;

    if (o->encoding == OBJ_ENCODING_ZIPLIST) {
        unsigned char *zl, *fptr, *vptr;

        zl = o->ptr;
        fptr = ziplistIndex(zl, ZIPLIST_HEAD);
        if (fptr != NULL) {
            fptr = ziplistFind(fptr, (unsigned char*)field, sdslen(field), 1);
            if (fptr != NULL) {
                /* Grab pointer to the value (fptr points to the field) */
                vptr = ziplistNext(zl, fptr);
                serverAssert(vptr != NULL);
                update = 1;

                /* Delete value */
                zl = ziplistDelete(zl, &vptr);

                /* Insert new value */
                zl = ziplistInsert(zl, vptr, (unsigned char*)value,
                        sdslen(value));
            }
        }
        o->ptr = zl;

        /* Check if the ziplist needs to be converted to a hash table */
        if (hashTypeLength(o) > server.hash_max_ziplist_entries)
            hashTypeConvert(o, OBJ_ENCODING_HT);
        
    ...
}

复制代码

首次插入的时候, ziplistIndex(zl, ZIPLIST_HEAD); 函数会返回NULL

unsigned char *ziplistIndex(unsigned char *zl, int index) {
    unsigned char *p;
    unsigned int prevlensize, prevlen = 0;
    if (index < 0) {
        index = (-index)-1;
        p = ZIPLIST_ENTRY_TAIL(zl);
        if (p[0] != ZIP_END) {
            ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
            while (prevlen > 0 && index--) {
                p -= prevlen;
                ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
            }
        }
    } else {
        p = ZIPLIST_ENTRY_HEAD(zl);
        while (p[0] != ZIP_END && index--) {
            p += zipRawEntryLength(p);
        }
    }
    return (p[0] == ZIP_END || index > 0) ? NULL : p;
}

复制代码

进而直接调用 ziplistPush 把field和value都插入到ziplist中。再插入过后,还再多了一次判断当前的ziplist的长度是不是大于了 server.hash_max_ziplist_entries ,如果是,就需要转换为hashtable结构存储。

unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
    unsigned char *p;
    p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
    return __ziplistInsert(zl,p,s,slen);
}

unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
    unsigned int prevlensize, prevlen = 0;
    size_t offset;
    int nextdiff = 0;
    unsigned char encoding = 0;
    long long value = 123456789; /* initialized to avoid warning. Using a value
                                    that is easy to see if for some reason
                                    we use it uninitialized. */
    zlentry tail;

    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {
        ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
    } else {
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
        if (ptail[0] != ZIP_END) {
            prevlen = zipRawEntryLength(ptail);
        }
    }

    /* See if the entry can be encoded */
    if (zipTryEncoding(s,slen,&value,&encoding)) {
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        /* 'encoding' is untouched, however zipStoreEntryEncoding will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
    reqlen += zipStorePrevEntryLength(NULL,prevlen);
    reqlen += zipStoreEntryEncoding(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
    int forcelarge = 0;
    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
    if (nextdiff == -4 && reqlen < 4) {
        nextdiff = 0;
        forcelarge = 1;
    }

    /* Store offset because a realloc may change the address of zl. */
    offset = p-zl;
    zl = ziplistResize(zl,curlen+reqlen+nextdiff);
    p = zl+offset;

    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        /* Subtract one because of the ZIP_END bytes */
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

        /* Encode this entry's raw length in the next entry. */
        if (forcelarge)
            zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
        else
            zipStorePrevEntryLength(p+reqlen,reqlen);

        /* Update offset for tail */
        ZIPLIST_TAIL_OFFSET(zl) =
            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        zipEntry(p+reqlen, &tail);
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
        }
    } else {
        /* This element will be the new tail. */
        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
    }

    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    if (nextdiff != 0) {
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

    /* Write the entry */
    p += zipStorePrevEntryLength(p,prevlen);  
    p += zipStoreEntryEncoding(p,encoding,slen);
    if (ZIP_IS_STR(encoding)) {
        memcpy(p,s,slen);
    } else {
        zipSaveInteger(p,value,encoding);
    }
    ZIPLIST_INCR_LENGTH(zl,1);
    return zl;
}

复制代码

插入的时候可以看出来,redis对于ziplist的存储数据结构也是比较特殊的。一个item项的结构如下:

redis个人理解4--hash对象的存储
p += zipStorePrevEntryLength(p,prevlen);    //计算上一个item项的长度
  p += zipStoreEntryEncoding(p,encoding,slen); //计算当前自己需要的编码
复制代码

其中 prev_entry_length 存储的是上一个item项的长度,这个也是redis比较特殊的地方,在本次更新item的时候采取计算上一个item项的长度。

encoding是当前这一项的编码方式。ziplist既然是压缩链表,本质上只是是对数字类型的压缩,字符串数字都统一转换为int8, int16, int32, int64 来存储,这样比较节约内存。

具体的代码实现如下:

/* See if the entry can be encoded */
    if (zipTryEncoding(s,slen,&value,&encoding)) {
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        /* 'encoding' is untouched, however zipStoreEntryEncoding will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }

复制代码

具体的 zipTryEncoding 代码实现:

/* Check if string pointed to by 'entry' can be encoded as an integer.
 * Stores the integer value in 'v' and its encoding in 'encoding'. */
int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
    long long value;

    if (entrylen >= 32 || entrylen == 0) return 0;
    if (string2ll((char*)entry,entrylen,&value)) {
        /* Great, the string can be encoded. Check what's the smallest
         * of our encoding types that can hold this value. */
        if (value >= 0 && value <= 12) {
            *encoding = ZIP_INT_IMM_MIN+value;
        } else if (value >= INT8_MIN && value <= INT8_MAX) {
            *encoding = ZIP_INT_8B;
        } else if (value >= INT16_MIN && value <= INT16_MAX) {
            *encoding = ZIP_INT_16B;
        } else if (value >= INT24_MIN && value <= INT24_MAX) {
            *encoding = ZIP_INT_24B;
        } else if (value >= INT32_MIN && value <= INT32_MAX) {
            *encoding = ZIP_INT_32B;
        } else {
            *encoding = ZIP_INT_64B;
        }
        *v = value;
        return 1;
    }
    return 0;
}


复制代码

其中string2ll其实就是一个atoi,但是要实现一个没bug的atoi还是很难的,看看redis的实现,觉得考虑的好全面,负数,越界都考虑清楚,感觉还是很难的。

/* Convert a string into a long long. Returns 1 if the string could be parsed
 * into a (non-overflowing) long long, 0 otherwise. The value will be set to
 * the parsed value when appropriate.
 *
 * Note that this function demands that the string strictly represents
 * a long long: no spaces or other characters before or after the string
 * representing the number are accepted, nor zeroes at the start if not
 * for the string "0" representing the zero number.
 *
 * Because of its strictness, it is safe to use this function to check if
 * you can convert a string into a long long, and obtain back the string
 * from the number without any loss in the string representation. */
int string2ll(const char *s, size_t slen, long long *value) {
    const char *p = s;
    size_t plen = 0;
    int negative = 0;
    unsigned long long v;

    /* A zero length string is not a valid number. */
    if (plen == slen)
        return 0;

    /* Special case: first and only digit is 0. */
    if (slen == 1 && p[0] == '0') {
        if (value != NULL) *value = 0;
        return 1;
    }

    /* Handle negative numbers: just set a flag and continue like if it
     * was a positive number. Later convert into negative. */
    if (p[0] == '-') {
        negative = 1;
        p++; plen++;

        /* Abort on only a negative sign. */
        if (plen == slen)
            return 0;
    }

    /* First digit should be 1-9, otherwise the string should just be 0. */
    if (p[0] >= '1' && p[0] <= '9') {
        v = p[0]-'0';
        p++; plen++;
    } else {
        return 0;
    }

    /* Parse all the other digits, checking for overflow at every step. */
    while (plen < slen && p[0] >= '0' && p[0] <= '9') {
        if (v > (ULLONG_MAX / 10)) /* Overflow. */
            return 0;
        v *= 10;

        if (v > (ULLONG_MAX - (p[0]-'0'))) /* Overflow. */
            return 0;
        v += p[0]-'0';

        p++; plen++;
    }

    /* Return if not all bytes were used. */
    if (plen < slen)
        return 0;

    /* Convert to negative if needed, and do the final overflow check when
     * converting from unsigned long long to long long. */
    if (negative) {
        if (v > ((unsigned long long)(-(LLONG_MIN+1))+1)) /* Overflow. */
            return 0;
        if (value != NULL) *value = -v;
    } else {
        if (v > LLONG_MAX) /* Overflow. */
            return 0;
        if (value != NULL) *value = v;
    }
    return 1;
}

复制代码

其实每次更新,都会触发内存的realloc,这个地方我感觉其实还是不太好的,如果一次更新n个kv对,就需要调用realloc函数n次,感觉有点浪费啊。

2.2 OBJ_ENCODING_HT存储方式

从上面的代码可以看出来有两种场景会触发hash obj修改encoding方式,分别如下:

hash-max-ziplist-entries 512
hash-max-ziplist-value 64
复制代码

当ziplist的entry个数小于512的时候, 还有一种场景是entry的值长度小于64的时候。当然这其实是redis的一个配置项。

那么hash table存储又是什么样的结构呢?看下面的代码:

void hashTypeConvertZiplist(robj *o, int enc) {
    serverAssert(o->encoding == OBJ_ENCODING_ZIPLIST);

    if (enc == OBJ_ENCODING_ZIPLIST) {
        /* Nothing to do... */

    } else if (enc == OBJ_ENCODING_HT) {
        hashTypeIterator *hi;
        dict *dict;
        int ret;

        hi = hashTypeInitIterator(o);
        dict = dictCreate(&hashDictType, NULL);

        while (hashTypeNext(hi) != C_ERR) {
            sds key, value;

            key = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_KEY);
            value = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_VALUE);
            ret = dictAdd(dict, key, value);
            if (ret != DICT_OK) {
                serverLogHexDump(LL_WARNING,"ziplist with dup elements dump",
                    o->ptr,ziplistBlobLen(o->ptr));
                serverPanic("Ziplist corruption detected");
            }
        }
        hashTypeReleaseIterator(hi);
        zfree(o->ptr);
        o->encoding = OBJ_ENCODING_HT;
        o->ptr = dict;
    } else {
        serverPanic("Unknown hash encoding");
    }
}


复制代码

可以看出会创建一个迭代器,遍历当前的ziplist结构,然后放到新创建的dict结构中。

关于dict的结构,可以参看之前我的一篇dict的数据结构分析。

3. 总结

hash对象的存储如果使用的编码是ZipList的时候,感觉效率是不高的,平均复杂度是 O(n) ,如果涉及到内存的连锁移动的话,最差的事件复杂度其实是 o(n^2)


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Dynamic Programming

Dynamic Programming

Richard Bellman / Dover Publications / 2003-03-04 / USD 19.95

An introduction to the mathematical theory of multistage decision processes, this text takes a "functional equation" approach to the discovery of optimum policies. The text examines existence and uniq......一起来看看 《Dynamic Programming》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具