聊聊storm trident batch的分流与聚合

栏目: 编程工具 · 发布时间: 6年前

内容简介:log实例storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentBoltExecutor.javastorm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java
TridentTopology topology = new TridentTopology();
        topology.newStream("spout1", spout)
                .partitionBy(new Fields("user"))
                .partitionAggregate(new Fields("user","score","batchId"),new OriginUserCountAggregator(),new Fields("result","aggBatchId"))
                .parallelismHint(3)
                .global()
                .aggregate(new Fields("result","aggBatchId"),new AggAgg(),new Fields("agg"))
                .each(new Fields("agg"),new PrintEachFunc(),new Fields())
        ;
复制代码
  • 这里最后构造了3个bolt,分别为b-0、b-1、b-2
  • b-0主要是partitionAggregate,它的parallelismHint为3
  • b-1主要是处理CombinerAggregator的init,它的parallelismHint为1,由于它的上游bolt有3个task,因而它的TridentBoltExecutor的tracked.condition.expectedTaskReports为3,它要等到这三个task的聚合数据都到了之后,才能finishBatch
  • b-2主要是处理CombinerAggregator的combine以及each操作
  • 整个数据流从spout开始的一个batch,到了b-0通过partitionBy分流为3个子batch,到了b-1则聚合了3个子batch之后才finishBatch,到了b-2则在b-1聚合之后的结果在做最后的聚合

log实例

23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt1, 1]
23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt2, 1]
23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt3, 1]
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt2, 1, 1]
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt2=1}}
23:22:00.722 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.723 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt1, 1, 1]
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt3, 1, 1]
23:22:00.723 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt1=1}}
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt3=1}}
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - zero called
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt2=1}}, 1:0]
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{},val2:{1={nickt2=1}}
23:22:00.726 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt3=1}}, 1:0]
23:22:00.727 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{1={nickt2=1}},val2:{1={nickt3=1}}
23:22:00.728 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt1=1}}, 1:0]
23:22:00.728 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{1={nickt3=1, nickt2=1}},val2:{1={nickt1=1}}
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.AggAgg - zero called
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.AggAgg - combine val1:{},val2:{1={nickt3=1, nickt2=1, nickt1=1}}
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.PrintEachFunc - null each tuple:[{1={nickt3=1, nickt2=1, nickt1=1}}]
复制代码
  • 这里看到storm的线程的命名已经带上了bolt的命名,比如b-0、b-1、b-2

TridentBoltExecutor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentBoltExecutor.java

public void execute(Tuple tuple) {
        if(TupleUtils.isTick(tuple)) {
            long now = System.currentTimeMillis();
            if(now - _lastRotate > _messageTimeoutMs) {
                _batches.rotate();
                _lastRotate = now;
            }
            return;
        }
        String batchGroup = _batchGroupIds.get(tuple.getSourceGlobalStreamId());
        if(batchGroup==null) {
            // this is so we can do things like have simple DRPC that doesn't need to use batch processing
            _coordCollector.setCurrBatch(null);
            _bolt.execute(null, tuple);
            _collector.ack(tuple);
            return;
        }
        IBatchID id = (IBatchID) tuple.getValue(0);
        //get transaction id
        //if it already exists and attempt id is greater than the attempt there
        
        
        TrackedBatch tracked = (TrackedBatch) _batches.get(id.getId());
//        if(_batches.size() > 10 && _context.getThisTaskIndex() == 0) {
//            System.out.println("Received in " + _context.getThisComponentId() + " " + _context.getThisTaskIndex()
//                    + " (" + _batches.size() + ")" +
//                    "\ntuple: " + tuple +
//                    "\nwith tracked " + tracked +
//                    "\nwith id " + id + 
//                    "\nwith group " + batchGroup
//                    + "\n");
//            
//        }
        //System.out.println("Num tracked: " + _batches.size() + " " + _context.getThisComponentId() + " " + _context.getThisTaskIndex());
        
        // this code here ensures that only one attempt is ever tracked for a batch, so when
        // failures happen you don't get an explosion in memory usage in the tasks
        if(tracked!=null) {
            if(id.getAttemptId() > tracked.attemptId) {
                _batches.remove(id.getId());
                tracked = null;
            } else if(id.getAttemptId() < tracked.attemptId) {
                // no reason to try to execute a previous attempt than we've already seen
                return;
            }
        }
        
        if(tracked==null) {
            tracked = new TrackedBatch(new BatchInfo(batchGroup, id, _bolt.initBatchState(batchGroup, id)), _coordConditions.get(batchGroup), id.getAttemptId());
            _batches.put(id.getId(), tracked);
        }
        _coordCollector.setCurrBatch(tracked);
        
        //System.out.println("TRACKED: " + tracked + " " + tuple);
        
        TupleType t = getTupleType(tuple, tracked);
        if(t==TupleType.COMMIT) {
            tracked.receivedCommit = true;
            checkFinish(tracked, tuple, t);
        } else if(t==TupleType.COORD) {
            int count = tuple.getInteger(1);
            tracked.reportedTasks++;
            tracked.expectedTupleCount+=count;
            checkFinish(tracked, tuple, t);
        } else {
            tracked.receivedTuples++;
            boolean success = true;
            try {
                _bolt.execute(tracked.info, tuple);
                if(tracked.condition.expectedTaskReports==0) {
                    success = finishBatch(tracked, tuple);
                }
            } catch(FailedException e) {
                failBatch(tracked, e);
            }
            if(success) {
                _collector.ack(tuple);                   
            } else {
                _collector.fail(tuple);
            }
        }
        _coordCollector.setCurrBatch(null);
    }

    private void failBatch(TrackedBatch tracked, FailedException e) {
        if(e!=null && e instanceof ReportedFailedException) {
            _collector.reportError(e);
        }
        tracked.failed = true;
        if(tracked.delayedAck!=null) {
            _collector.fail(tracked.delayedAck);
            tracked.delayedAck = null;
        }
    }

    private void checkFinish(TrackedBatch tracked, Tuple tuple, TupleType type) {
        if(tracked.failed) {
            failBatch(tracked);
            _collector.fail(tuple);
            return;
        }
        CoordCondition cond = tracked.condition;
        boolean delayed = tracked.delayedAck==null &&
                              (cond.commitStream!=null && type==TupleType.COMMIT
                               || cond.commitStream==null);
        if(delayed) {
            tracked.delayedAck = tuple;
        }
        boolean failed = false;
        if(tracked.receivedCommit && tracked.reportedTasks == cond.expectedTaskReports) {
            if(tracked.receivedTuples == tracked.expectedTupleCount) {
                finishBatch(tracked, tuple);                
            } else {
                //TODO: add logging that not all tuples were received
                failBatch(tracked);
                _collector.fail(tuple);
                failed = true;
            }
        }
        
        if(!delayed && !failed) {
            _collector.ack(tuple);
        }
        
    }


复制代码
  • execute方法里头在TrackedBatch不存在时会创建一个,创建的时候会调用_bolt.initBatchState方法
  • 这里头可以看到在接收到正常tuple的时候,先调用_bolt.execute(tracked.info, tuple)执行,然后在调用_collector的ack,如果_bolt.execute抛出FailedException,则直接failBatch,它会标记tracked.failed为true,最后在整个batch的tuple收发结束之后调用checkFinish,一旦发现有tracked.failed,则会调用_collector.fail
  • 这里的_bolt有两类,分别是TridentSpoutExecutor与SubtopologyBolt;如果是TridentSpoutExecutor,则tracked.condition.expectedTaskReports为0,这里每收到一个tuple( 实际是发射一个batch的指令 ),在_bolt.execute之后就立马finishBatch;而对于SubtopologyBolt,这里tracked.condition.expectedTaskReports不为0,需要等到最后的[id,count]指令再checkFinish

TridentSpoutExecutor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java

@Override
    public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector) {
        _emitter = _spout.getEmitter(_txStateId, conf, context);
        _collector = new AddIdCollector(_streamName, collector);
    }

    @Override
    public void execute(BatchInfo info, Tuple input) {
        // there won't be a BatchInfo for the success stream
        TransactionAttempt attempt = (TransactionAttempt) input.getValue(0);
        if(input.getSourceStreamId().equals(MasterBatchCoordinator.COMMIT_STREAM_ID)) {
            if(attempt.equals(_activeBatches.get(attempt.getTransactionId()))) {
                ((ICommitterTridentSpout.Emitter) _emitter).commit(attempt);
                _activeBatches.remove(attempt.getTransactionId());
            } else {
                 throw new FailedException("Received commit for different transaction attempt");
            }
        } else if(input.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) {
            // valid to delete before what's been committed since 
            // those batches will never be accessed again
            _activeBatches.headMap(attempt.getTransactionId()).clear();
            _emitter.success(attempt);
        } else {            
            _collector.setBatch(info.batchId);
            _emitter.emitBatch(attempt, input.getValue(1), _collector);
            _activeBatches.put(attempt.getTransactionId(), attempt);
        }
    }

    @Override
    public void finishBatch(BatchInfo batchInfo) {
    }

    @Override
    public Object initBatchState(String batchGroup, Object batchId) {
        return null;
    }
复制代码
  • TridentSpoutExecutor使用的是AddIdCollector,它的initBatchState以及finishBatch方法均为空操作
  • execute方法分COMMIT_STREAM_ID、SUCCESS_STREAM_ID、普通stream来处理
  • 普通的stream发来的tuple就是发射batch的指令,这里就调用_emitter.emitBatch发射batch的tuples

SubtopologyBolt

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/SubtopologyBolt.java

@Override
    public Object initBatchState(String batchGroup, Object batchId) {
        ProcessorContext ret = new ProcessorContext(batchId, new Object[_nodes.size()]);
        for(TridentProcessor p: _myTopologicallyOrdered.get(batchGroup)) {
            p.startBatch(ret);
        }
        return ret;
    }

    @Override
    public void execute(BatchInfo batchInfo, Tuple tuple) {
        String sourceStream = tuple.getSourceStreamId();
        InitialReceiver ir = _roots.get(sourceStream);
        if(ir==null) {
            throw new RuntimeException("Received unexpected tuple " + tuple.toString());
        }
        ir.receive((ProcessorContext) batchInfo.state, tuple);
    }

    @Override
    public void finishBatch(BatchInfo batchInfo) {
        for(TridentProcessor p: _myTopologicallyOrdered.get(batchInfo.batchGroup)) {
            p.finishBatch((ProcessorContext) batchInfo.state);
        }
    }

    protected static class InitialReceiver {
        List<TridentProcessor> _receivers = new ArrayList<>();
        RootFactory _factory;
        ProjectionFactory _project;
        String _stream;
        
        public InitialReceiver(String stream, Fields allFields) {
            // TODO: don't want to project for non-batch bolts...???
            // how to distinguish "batch" streams from non-batch streams?
            _stream = stream;
            _factory = new RootFactory(allFields);
            List<String> projected = new ArrayList<>(allFields.toList());
            projected.remove(0);
            _project = new ProjectionFactory(_factory, new Fields(projected));
        }
        
        public void receive(ProcessorContext context, Tuple tuple) {
            TridentTuple t = _project.create(_factory.create(tuple));
            for(TridentProcessor r: _receivers) {
                r.execute(context, _stream, t);
            }            
        }
        
        public void addReceiver(TridentProcessor p) {
            _receivers.add(p);
        }
        
        public Factory getOutputFactory() {
            return _project;
        }
    }
复制代码
比如AggregateProcessor、EachProcessor
比如AggregateProcessor
比如AggregateProcessor、EachProcessor

WindowTridentProcessor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/windowing/WindowTridentProcessor.java

@Override
    public void startBatch(ProcessorContext processorContext) {
        // initialize state for batch
        processorContext.state[tridentContext.getStateIndex()] = new ArrayList<TridentTuple>();
    }

    @Override
    public void execute(ProcessorContext processorContext, String streamId, TridentTuple tuple) {
        // add tuple to the batch state
        Object state = processorContext.state[tridentContext.getStateIndex()];
        ((List<TridentTuple>) state).add(projection.create(tuple));
    }

    @Override
    public void finishBatch(ProcessorContext processorContext) {

        Object batchId = processorContext.batchId;
        Object batchTxnId = getBatchTxnId(batchId);

        LOG.debug("Received finishBatch of : [{}] ", batchId);
        // get all the tuples in a batch and add it to trident-window-manager
        List<TridentTuple> tuples = (List<TridentTuple>) processorContext.state[tridentContext.getStateIndex()];
        tridentWindowManager.addTuplesBatch(batchId, tuples);

        List<Integer> pendingTriggerIds = null;
        List<String> triggerKeys = new ArrayList<>();
        Iterable<Object> triggerValues = null;

        if (retriedAttempt(batchId)) {
            pendingTriggerIds = (List<Integer>) windowStore.get(inprocessTriggerKey(batchTxnId));
            if (pendingTriggerIds != null) {
                for (Integer pendingTriggerId : pendingTriggerIds) {
                    triggerKeys.add(triggerKey(pendingTriggerId));
                }
                triggerValues = windowStore.get(triggerKeys);
            }
        }

        // if there are no trigger values in earlier attempts or this is a new batch, emit pending triggers.
        if(triggerValues == null) {
            pendingTriggerIds = new ArrayList<>();
            Queue<StoreBasedTridentWindowManager.TriggerResult> pendingTriggers = tridentWindowManager.getPendingTriggers();
            LOG.debug("pending triggers at batch: [{}] and triggers.size: [{}] ", batchId, pendingTriggers.size());
            try {
                Iterator<StoreBasedTridentWindowManager.TriggerResult> pendingTriggersIter = pendingTriggers.iterator();
                List<Object> values = new ArrayList<>();
                StoreBasedTridentWindowManager.TriggerResult triggerResult = null;
                while (pendingTriggersIter.hasNext()) {
                    triggerResult = pendingTriggersIter.next();
                    for (List<Object> aggregatedResult : triggerResult.result) {
                        String triggerKey = triggerKey(triggerResult.id);
                        triggerKeys.add(triggerKey);
                        values.add(aggregatedResult);
                        pendingTriggerIds.add(triggerResult.id);
                    }
                    pendingTriggersIter.remove();
                }
                triggerValues = values;
            } finally {
                // store inprocess triggers of a batch in store for batch retries for any failures
                if (!pendingTriggerIds.isEmpty()) {
                    windowStore.put(inprocessTriggerKey(batchTxnId), pendingTriggerIds);
                }
            }
        }

        collector.setContext(processorContext);
        int i = 0;
        for (Object resultValue : triggerValues) {
            collector.emit(new ConsList(new TriggerInfo(windowTaskId, pendingTriggerIds.get(i++)), (List<Object>) resultValue));
        }
        collector.setContext(null);
    }
复制代码
比如ProjectedProcessor、PartitionPersistProcessor

小结

TridentBoltExecutor会在tuple处理完之后自动帮你进行ack
WindowTridentProcessor每次在startBatch的时候都会重置state
topology.trident.batch.emit.interval.millis,在defaults.yaml默认为500
tuple按emit的顺序来,最后一个是[id,count],它就相当于结束batch的指令,用于检测及触发完成batch操作

doc


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Pro Git (Second Edition)

Pro Git (Second Edition)

Scott Chacon、Ben Straub / Apress / 2014-11-9 / USD 59.99

Scott Chacon is a cofounder and the CIO of GitHub and is also the maintainer of the Git homepage ( git-scm.com ) . Scott has presented at dozens of conferences around the world on Git, GitHub and the ......一起来看看 《Pro Git (Second Edition)》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具