内容简介:storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/ICommitterTridentSpout.javastorm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentTopologyBuilder.javastorm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/MasterBatchC
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/ICommitterTridentSpout.java
public interface ICommitterTridentSpout<X> extends ITridentSpout<X> { public interface Emitter extends ITridentSpout.Emitter { void commit(TransactionAttempt attempt); } @Override public Emitter getEmitter(String txStateId, Map conf, TopologyContext context); } 复制代码
- ICommitterTridentSpout继承了ITridentSpout,主要是对getEmitter方法进行覆盖,返回扩展的Emitter,它继承ITridentSpout.Emitter ,多定义了一个commit接口
TridentTopologyBuilder.buildTopology
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentTopologyBuilder.java
public StormTopology buildTopology(Map<String, Number> masterCoordResources) { TopologyBuilder builder = new TopologyBuilder(); Map<GlobalStreamId, String> batchIdsForSpouts = fleshOutStreamBatchIds(false); Map<GlobalStreamId, String> batchIdsForBolts = fleshOutStreamBatchIds(true); Map<String, List<String>> batchesToCommitIds = new HashMap<>(); Map<String, List<ITridentSpout>> batchesToSpouts = new HashMap<>(); for(String id: _spouts.keySet()) { TransactionalSpoutComponent c = _spouts.get(id); if(c.spout instanceof IRichSpout) { //TODO: wrap this to set the stream name builder.setSpout(id, (IRichSpout) c.spout, c.parallelism); } else { String batchGroup = c.batchGroupId; if(!batchesToCommitIds.containsKey(batchGroup)) { batchesToCommitIds.put(batchGroup, new ArrayList<String>()); } batchesToCommitIds.get(batchGroup).add(c.commitStateId); if(!batchesToSpouts.containsKey(batchGroup)) { batchesToSpouts.put(batchGroup, new ArrayList<ITridentSpout>()); } batchesToSpouts.get(batchGroup).add((ITridentSpout) c.spout); BoltDeclarer scd = builder.setBolt(spoutCoordinator(id), new TridentSpoutCoordinator(c.commitStateId, (ITridentSpout) c.spout)) .globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.BATCH_STREAM_ID) .globalGrouping(masterCoordinator(c.batchGroupId), MasterBatchCoordinator.SUCCESS_STREAM_ID); for(Map<String, Object> m: c.componentConfs) { scd.addConfigurations(m); } Map<String, TridentBoltExecutor.CoordSpec> specs = new HashMap(); specs.put(c.batchGroupId, new CoordSpec()); BoltDeclarer bd = builder.setBolt(id, new TridentBoltExecutor( new TridentSpoutExecutor( c.commitStateId, c.streamName, ((ITridentSpout) c.spout)), batchIdsForSpouts, specs), c.parallelism); bd.allGrouping(spoutCoordinator(id), MasterBatchCoordinator.BATCH_STREAM_ID); bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.SUCCESS_STREAM_ID); if(c.spout instanceof ICommitterTridentSpout) { bd.allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID); } for(Map<String, Object> m: c.componentConfs) { bd.addConfigurations(m); } } } //...... return builder.createTopology(); } 复制代码
- TridentTopologyBuilder.buildTopology的时候,对用户的spout判断,如果是ICommitterTridentSpout类型的,则会配置allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID)
MasterBatchCoordinator
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/MasterBatchCoordinator.java
@Override public void nextTuple() { sync(); } private void sync() { // note that sometimes the tuples active may be less than max_spout_pending, e.g. // max_spout_pending = 3 // tx 1, 2, 3 active, tx 2 is acked. there won't be a commit for tx 2 (because tx 1 isn't committed yet), // and there won't be a batch for tx 4 because there's max_spout_pending tx active TransactionStatus maybeCommit = _activeTx.get(_currTransaction); if(maybeCommit!=null && maybeCommit.status == AttemptStatus.PROCESSED) { maybeCommit.status = AttemptStatus.COMMITTING; _collector.emit(COMMIT_STREAM_ID, new Values(maybeCommit.attempt), maybeCommit.attempt); LOG.debug("Emitted on [stream = {}], [tx_status = {}], [{}]", COMMIT_STREAM_ID, maybeCommit, this); } if(_active) { if(_activeTx.size() < _maxTransactionActive) { Long curr = _currTransaction; for(int i=0; i<_maxTransactionActive; i++) { if(!_activeTx.containsKey(curr) && isReady(curr)) { // by using a monotonically increasing attempt id, downstream tasks // can be memory efficient by clearing out state for old attempts // as soon as they see a higher attempt id for a transaction Integer attemptId = _attemptIds.get(curr); if(attemptId==null) { attemptId = 0; } else { attemptId++; } _attemptIds.put(curr, attemptId); for(TransactionalState state: _states) { state.setData(CURRENT_ATTEMPTS, _attemptIds); } TransactionAttempt attempt = new TransactionAttempt(curr, attemptId); final TransactionStatus newTransactionStatus = new TransactionStatus(attempt); _activeTx.put(curr, newTransactionStatus); _collector.emit(BATCH_STREAM_ID, new Values(attempt), attempt); LOG.debug("Emitted on [stream = {}], [tx_attempt = {}], [tx_status = {}], [{}]", BATCH_STREAM_ID, attempt, newTransactionStatus, this); _throttler.markEvent(); } curr = nextTransactionId(curr); } } } } @Override public void ack(Object msgId) { TransactionAttempt tx = (TransactionAttempt) msgId; TransactionStatus status = _activeTx.get(tx.getTransactionId()); LOG.debug("Ack. [tx_attempt = {}], [tx_status = {}], [{}]", tx, status, this); if(status!=null && tx.equals(status.attempt)) { if(status.status==AttemptStatus.PROCESSING) { status.status = AttemptStatus.PROCESSED; LOG.debug("Changed status. [tx_attempt = {}] [tx_status = {}]", tx, status); } else if(status.status==AttemptStatus.COMMITTING) { _activeTx.remove(tx.getTransactionId()); _attemptIds.remove(tx.getTransactionId()); _collector.emit(SUCCESS_STREAM_ID, new Values(tx)); _currTransaction = nextTransactionId(tx.getTransactionId()); for(TransactionalState state: _states) { state.setData(CURRENT_TX, _currTransaction); } LOG.debug("Emitted on [stream = {}], [tx_attempt = {}], [tx_status = {}], [{}]", SUCCESS_STREAM_ID, tx, status, this); } sync(); } } 复制代码
- MasterBatchCoordinator在收到ack的时候,如果status是AttemptStatus.PROCESSING状态,则更改status为AttemptStatus.PROCESSED;如果status是AttemptStatus.COMMITTING,则往SUCCESS_STREAM_ID发射tuple;之后调用sync方法
- nextTuple方法也是调用sync方法,判断如果是AttemptStatus.PROCESSED状态,则更改status为AttemptStatus.COMMITTING,同时往COMMIT_STREAM_ID发射tuple
-
可以看到这里状态由AttemptStatus.PROCESSING变为AttemptStatus.PROCESSED(
nextTuple方法将AttemptStatus.PROCESSED变为AttemptStatus.COMMITTING,然后往COMMIT_STREAM_ID发射tuple
),再变为AttemptStatus.COMMITTING(ack的时候,如果是AttemptStatus.COMMITTING状态,则往SUCCESS_STREAM_ID发射tuple
)
TridentSpoutExecutor
storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java
public void execute(BatchInfo info, Tuple input) { // there won't be a BatchInfo for the success stream TransactionAttempt attempt = (TransactionAttempt) input.getValue(0); if(input.getSourceStreamId().equals(MasterBatchCoordinator.COMMIT_STREAM_ID)) { if(attempt.equals(_activeBatches.get(attempt.getTransactionId()))) { ((ICommitterTridentSpout.Emitter) _emitter).commit(attempt); _activeBatches.remove(attempt.getTransactionId()); } else { throw new FailedException("Received commit for different transaction attempt"); } } else if(input.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) { // valid to delete before what's been committed since // those batches will never be accessed again _activeBatches.headMap(attempt.getTransactionId()).clear(); _emitter.success(attempt); } else { _collector.setBatch(info.batchId); _emitter.emitBatch(attempt, input.getValue(1), _collector); _activeBatches.put(attempt.getTransactionId(), attempt); } } 复制代码
- TridentSpoutExecutor在execute的时候,判断如果是MasterBatchCoordinator.COMMIT_STREAM_ID的数据,而且TransactionAttempt的txid相等,则调用((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)
TridentBoltExecutor
storm-2.0.0/storm-client/src/jvm/org/apache/storm/trident/topology/TridentBoltExecutor.java
public void execute(Tuple tuple) { if (TupleUtils.isTick(tuple)) { long now = System.currentTimeMillis(); if (now - _lastRotate > _messageTimeoutMs) { _batches.rotate(); _lastRotate = now; } return; } String batchGroup = _batchGroupIds.get(tuple.getSourceGlobalStreamId()); if (batchGroup == null) { // this is so we can do things like have simple DRPC that doesn't need to use batch processing _coordCollector.setCurrBatch(null); _bolt.execute(null, tuple); _collector.ack(tuple); return; } IBatchID id = (IBatchID) tuple.getValue(0); //get transaction id //if it already exists and attempt id is greater than the attempt there TrackedBatch tracked = (TrackedBatch) _batches.get(id.getId()); // if(_batches.size() > 10 && _context.getThisTaskIndex() == 0) { // System.out.println("Received in " + _context.getThisComponentId() + " " + _context.getThisTaskIndex() // + " (" + _batches.size() + ")" + // "\ntuple: " + tuple + // "\nwith tracked " + tracked + // "\nwith id " + id + // "\nwith group " + batchGroup // + "\n"); // // } //System.out.println("Num tracked: " + _batches.size() + " " + _context.getThisComponentId() + " " + _context.getThisTaskIndex()); // this code here ensures that only one attempt is ever tracked for a batch, so when // failures happen you don't get an explosion in memory usage in the tasks if (tracked != null) { if (id.getAttemptId() > tracked.attemptId) { _batches.remove(id.getId()); tracked = null; } else if (id.getAttemptId() < tracked.attemptId) { // no reason to try to execute a previous attempt than we've already seen return; } } if (tracked == null) { tracked = new TrackedBatch(new BatchInfo(batchGroup, id, _bolt.initBatchState(batchGroup, id)), _coordConditions.get(batchGroup), id.getAttemptId()); _batches.put(id.getId(), tracked); } _coordCollector.setCurrBatch(tracked); //System.out.println("TRACKED: " + tracked + " " + tuple); TupleType t = getTupleType(tuple, tracked); if (t == TupleType.COMMIT) { tracked.receivedCommit = true; checkFinish(tracked, tuple, t); } else if (t == TupleType.COORD) { int count = tuple.getInteger(1); tracked.reportedTasks++; tracked.expectedTupleCount += count; checkFinish(tracked, tuple, t); } else { tracked.receivedTuples++; boolean success = true; try { _bolt.execute(tracked.info, tuple); if (tracked.condition.expectedTaskReports == 0) { success = finishBatch(tracked, tuple); } } catch (FailedException e) { failBatch(tracked, e); } if (success) { _collector.ack(tuple); } else { _collector.fail(tuple); } } _coordCollector.setCurrBatch(null); } 复制代码
- 这里再调用_bolt.execute(tracked.info, tuple)之后,会调用_collector.ack(tuple)完成ack
SpoutOutputCollector
storm-core-1.2.2-sources.jar!/org/apache/storm/spout/SpoutOutputCollector.java
/** * Emits a new tuple to the specified output stream with the given message ID. * When Storm detects that this tuple has been fully processed, or has failed * to be fully processed, the spout will receive an ack or fail callback respectively * with the messageId as long as the messageId was not null. If the messageId was null, * Storm will not track the tuple and no callback will be received. * Note that Storm's event logging functionality will only work if the messageId * is serializable via Kryo or the Serializable interface. The emitted values must be immutable. * * @return the list of task ids that this tuple was sent to */ public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) { return _delegate.emit(streamId, tuple, messageId); } 复制代码
- 这里调用了_delegate.emit的emit,这里的_delegate为SpoutOutputCollectorImpl
SpoutOutputCollectorImpl
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutOutputCollectorImpl.java
public List<Integer> emit(String streamId, List<Object> tuple, Object messageId) { try { return sendSpoutMsg(streamId, tuple, messageId, null); } catch (InterruptedException e) { LOG.warn("Spout thread interrupted during emit()."); throw new RuntimeException(e); } } private List<Integer> sendSpoutMsg(String stream, List<Object> values, Object messageId, Integer outTaskId) throws InterruptedException { emittedCount.increment(); List<Integer> outTasks; if (outTaskId != null) { outTasks = taskData.getOutgoingTasks(outTaskId, stream, values); } else { outTasks = taskData.getOutgoingTasks(stream, values); } final boolean needAck = (messageId != null) && hasAckers; final List<Long> ackSeq = needAck ? new ArrayList<>() : null; final long rootId = needAck ? MessageId.generateId(random) : 0; for (int i = 0; i < outTasks.size(); i++) { // perf critical path. don't use iterators. Integer t = outTasks.get(i); MessageId msgId; if (needAck) { long as = MessageId.generateId(random); msgId = MessageId.makeRootId(rootId, as); ackSeq.add(as); } else { msgId = MessageId.makeUnanchored(); } final TupleImpl tuple = new TupleImpl(executor.getWorkerTopologyContext(), values, executor.getComponentId(), this.taskId, stream, msgId); AddressedTuple adrTuple = new AddressedTuple(t, tuple); executor.getExecutorTransfer().tryTransfer(adrTuple, executor.getPendingEmits()); } if (isEventLoggers) { taskData.sendToEventLogger(executor, values, executor.getComponentId(), messageId, random, executor.getPendingEmits()); } if (needAck) { boolean sample = executor.samplerCheck(); TupleInfo info = new TupleInfo(); info.setTaskId(this.taskId); info.setStream(stream); info.setMessageId(messageId); if (isDebug) { info.setValues(values); } if (sample) { info.setTimestamp(System.currentTimeMillis()); } pending.put(rootId, info); List<Object> ackInitTuple = new Values(rootId, Utils.bitXorVals(ackSeq), this.taskId); taskData.sendUnanchored(Acker.ACKER_INIT_STREAM_ID, ackInitTuple, executor.getExecutorTransfer(), executor.getPendingEmits()); } else if (messageId != null) { // Reusing TupleInfo object as we directly call executor.ackSpoutMsg() & are not sending msgs. perf critical if (isDebug) { if (spoutExecutorThdId != Thread.currentThread().getId()) { throw new RuntimeException("Detected background thread emitting tuples for the spout. " + "Spout Output Collector should only emit from the main spout executor thread."); } } globalTupleInfo.clear(); globalTupleInfo.setStream(stream); globalTupleInfo.setValues(values); globalTupleInfo.setMessageId(messageId); globalTupleInfo.setTimestamp(0); globalTupleInfo.setId("0:"); Long timeDelta = 0L; executor.ackSpoutMsg(executor, taskData, timeDelta, globalTupleInfo); } return outTasks; } 复制代码
- 这里neekAck的话,会调用taskData.sendUnanchored(Acker.ACKER_INIT_STREAM_ID, ackInitTuple, executor.getExecutorTransfer(), executor.getPendingEmits());
- 注意这里的ackInitTuple为Values(rootId, Utils.bitXorVals(ackSeq), this.taskId),第二个值对List ackSeq进行了Utils.bitXorVals运算
- ackSeq在没有outTask的时候,是个空的list,它的Utils.bitXorVals操作为0
Utils
storm-2.0.0/storm-client/src/jvm/org/apache/storm/utils/Utils.java
public static long bitXorVals(List<Long> coll) { long result = 0; for (Long val : coll) { result ^= val; } return result; } public static long bitXor(Long a, Long b) { return a ^ b; } 复制代码
- bitXor运算是storm的ack机制的核心运算
Acker
storm-2.0.0/storm-client/src/jvm/org/apache/storm/daemon/Acker.java
public void execute(Tuple input) { if (TupleUtils.isTick(input)) { Map<Object, AckObject> tmp = pending.rotate(); LOG.debug("Number of timeout tuples:{}", tmp.size()); return; } boolean resetTimeout = false; String streamId = input.getSourceStreamId(); Object id = input.getValue(0); AckObject curr = pending.get(id); if (ACKER_INIT_STREAM_ID.equals(streamId)) { if (curr == null) { curr = new AckObject(); pending.put(id, curr); } curr.updateAck(input.getLong(1)); curr.spoutTask = input.getInteger(2); } else if (ACKER_ACK_STREAM_ID.equals(streamId)) { if (curr == null) { curr = new AckObject(); pending.put(id, curr); } curr.updateAck(input.getLong(1)); } else if (ACKER_FAIL_STREAM_ID.equals(streamId)) { // For the case that ack_fail message arrives before ack_init if (curr == null) { curr = new AckObject(); } curr.failed = true; pending.put(id, curr); } else if (ACKER_RESET_TIMEOUT_STREAM_ID.equals(streamId)) { resetTimeout = true; if (curr != null) { pending.put(id, curr); } //else if it has not been added yet, there is no reason time it out later on } else if (Constants.SYSTEM_FLUSH_STREAM_ID.equals(streamId)) { collector.flush(); return; } else { LOG.warn("Unknown source stream {} from task-{}", streamId, input.getSourceTask()); return; } int task = curr.spoutTask; if (task >= 0 && (curr.val == 0 || curr.failed || resetTimeout)) { Values tuple = new Values(id, getTimeDeltaMillis(curr.startTime)); if (curr.val == 0) { pending.remove(id); collector.emitDirect(task, ACKER_ACK_STREAM_ID, tuple); } else if (curr.failed) { pending.remove(id); collector.emitDirect(task, ACKER_FAIL_STREAM_ID, tuple); } else if (resetTimeout) { collector.emitDirect(task, ACKER_RESET_TIMEOUT_STREAM_ID, tuple); } else { throw new IllegalStateException("The checks are inconsistent we reach what should be unreachable code."); } } collector.ack(input); } private static class AckObject { public long val = 0L; public long startTime = Time.currentTimeMillis(); public int spoutTask = -1; public boolean failed = false; // val xor value public void updateAck(Long value) { val = Utils.bitXor(val, value); } } 复制代码
- 当Acker收到ACKER_INIT_STREAM_ID时,如果当前AckObject为null,则创建一个AckObject,其val默认为0;之后调用curr.updateAck(input.getLong(1)),即根据tuple的第二个值来更新AckObject的val
- SpoutOutputCollectorImpl发射过来的tuple为Values(rootId, Utils.bitXorVals(ackSeq), this.taskId),其第二个值为Utils.bitXorVals(ackSeq);askSeq为List<Long>,当没有outputTask的时候,其list为空,而Utils.bitXorVals值为0,这种情况下,curr.updateAck(0)返回0
- Acker在execute的最后会判断,如果curr.val == 0则会触发collector.emitDirect(task, ACKER_ACK_STREAM_ID, tuple)
SpoutExecutor
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutExecutor.java
public void tupleActionFn(int taskId, TupleImpl tuple) throws Exception { String streamId = tuple.getSourceStreamId(); if (Constants.SYSTEM_FLUSH_STREAM_ID.equals(streamId)) { spoutOutputCollector.flush(); } else if (streamId.equals(Constants.SYSTEM_TICK_STREAM_ID)) { pending.rotate(); } else if (streamId.equals(Constants.METRICS_TICK_STREAM_ID)) { metricsTick(idToTask.get(taskId - idToTaskBase), tuple); } else if (streamId.equals(Constants.CREDENTIALS_CHANGED_STREAM_ID)) { Object spoutObj = idToTask.get(taskId - idToTaskBase).getTaskObject(); if (spoutObj instanceof ICredentialsListener) { ((ICredentialsListener) spoutObj).setCredentials((Map<String, String>) tuple.getValue(0)); } } else if (streamId.equals(Acker.ACKER_RESET_TIMEOUT_STREAM_ID)) { Long id = (Long) tuple.getValue(0); TupleInfo pendingForId = pending.get(id); if (pendingForId != null) { pending.put(id, pendingForId); } } else { Long id = (Long) tuple.getValue(0); Long timeDeltaMs = (Long) tuple.getValue(1); TupleInfo tupleInfo = pending.remove(id); if (tupleInfo != null && tupleInfo.getMessageId() != null) { if (taskId != tupleInfo.getTaskId()) { throw new RuntimeException("Fatal error, mismatched task ids: " + taskId + " " + tupleInfo.getTaskId()); } Long timeDelta = null; if (hasAckers) { long startTimeMs = tupleInfo.getTimestamp(); if (startTimeMs != 0) { timeDelta = timeDeltaMs; } } if (streamId.equals(Acker.ACKER_ACK_STREAM_ID)) { ackSpoutMsg(this, idToTask.get(taskId - idToTaskBase), timeDelta, tupleInfo); } else if (streamId.equals(Acker.ACKER_FAIL_STREAM_ID)) { failSpoutMsg(this, idToTask.get(taskId - idToTaskBase), timeDelta, tupleInfo, "FAIL-STREAM"); } } } } public void ackSpoutMsg(SpoutExecutor executor, Task taskData, Long timeDelta, TupleInfo tupleInfo) { try { ISpout spout = (ISpout) taskData.getTaskObject(); int taskId = taskData.getTaskId(); if (executor.getIsDebug()) { LOG.info("SPOUT Acking message {} {}", tupleInfo.getId(), tupleInfo.getMessageId()); } spout.ack(tupleInfo.getMessageId()); if (!taskData.getUserContext().getHooks().isEmpty()) { // avoid allocating SpoutAckInfo obj if not necessary new SpoutAckInfo(tupleInfo.getMessageId(), taskId, timeDelta).applyOn(taskData.getUserContext()); } if (hasAckers && timeDelta != null) { executor.getStats().spoutAckedTuple(tupleInfo.getStream(), timeDelta, taskData.getTaskMetrics().getAcked(tupleInfo.getStream())); } } catch (Exception e) { throw Utils.wrapInRuntime(e); } } 复制代码
- SpoutExecutor在收到Acker.ACKER_ACK_STREAM_ID的时候,会调用ackSpoutMsg方法,该方法会回调原始spout的ack方法,即spout.ack(tupleInfo.getMessageId())
小结
-
MasterBatchCoordinator在第一次收到同一个msgId的ack时(
第一次被调用
),status由开始的AttemptStatus.PROCESSING转变为AttemptStatus.PROCESSED,在之后的sync方法里头AttemptStatus.PROCESSED转变为AttemptStatus.COMMITTING,然后往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple -
当用户的spout是ICommitterTridentSpout时,TridentTopologyBuilder.buildTopology的时候,会配置allGrouping(masterCoordinator(batchGroup), MasterBatchCoordinator.COMMIT_STREAM_ID);TridentSpoutExecutor会接收MasterBatchCoordinator.COMMIT_STREAM_ID的数据,然后调用((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)方法;之后TridentBoltExecutor在TridentSpoutExecutor.execute执行完了之后会自动ack该tuple,然后调用MasterBatchCoordinator的ack方法(
第二次被调用
),然后触发_collector.emit(SUCCESS_STREAM_ID, new Values(tx)) -
当用户的spout不是ICommitterTridentSpout时,这个时候整个topology就没有component去接收MasterBatchCoordinator.COMMIT_STREAM_ID发射的tuple,即outgoingTasks为空,那么在SpoutOutputCollectorImpl在needAck的情况下,会给Acker.ACKER_INIT_STREAM_ID发射的tuple,其第二个值为Utils.bitXorVals(ackSeq),ackSeq为空list(
根据outgoingTasks来计算
),该值为0;那么在Acker接收到ACKER_INIT_STREAM_ID时,curr.updateAck(input.getLong(1))之后curr.val的值为0;这样Acker在execute的最后看到curr.val为0,又会给Acker.ACKER_ACK_STREAM_ID发射tuple,SpoutExecutor在收到Acker.ACKER_ACK_STREAM_ID的时候,会调用ackSpoutMsg方法,该方法会回调原始spout的ack方法,即spout.ack(tupleInfo.getMessageId());即当一个streamId没有component消费的时候,会自动ack;这样对于spout不是ICommitterTridentSpout的情况,在往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple之后,会调用MasterBatchCoordinator的ack方法(第二次被调用
),然后触发_collector.emit(SUCCESS_STREAM_ID, new Values(tx))
spout是否是ICommitterTridentSpout类型的区别在于不是ICommitterTridentSpout类型,它在往MasterBatchCoordinator.COMMIT_STREAM_ID发射tuple之后,Acker会自动ack,调用MasterBatchCoordinator的ack方法( 第二次被调用
);而ICommitterTridentSpout类型会先执行((ICommitterTridentSpout.Emitter) _emitter).commit(attempt)方法,然后由TridentBoltExecutor来ack,然后调用MasterBatchCoordinator的ack方法( 第二次被调用
);二者在成功的场景下最后都会往SUCCESS_STREAM_ID发送tuple
以上所述就是小编给大家介绍的《聊聊storm的ICommitterTridentSpout》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。