内容简介:(1)必须使用InnoDB存储引擎(2)必须使用(3)数据表、数据字段必须加入中文注释
一、基础规范
(1)必须使用InnoDB存储引擎
解读:支持事务、行级锁、并发性能更好、CPU及内存缓存页优化使得资源利用率更高
(2)必须使用 UTF8 字符集
解读:万国码,无需转码,无乱码风险,节省空间
(3)数据表、数据字段必须加入中文注释
解读:N年后谁tm知道这个r1,r2,r3字段是干嘛的
(4)禁止使用存储过程、视图、触发器、Event
解读:高并发大数据的互联网业务,架构设计思路是“解放数据库CPU,将计算转移到服务层”,并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现“增机器就加性能”。数据库擅长存储与索引,CPU计算还是上移吧
(5)禁止存储大文件或者大照片
解读:为何要让数据库做它不擅长的事情?大文件和照片存储在文件系统,数据库里存URI多好
二、命名规范
(6)只允许使用内网域名,而不是ip连接数据库
(7)线上环境、开发环境、测试环境数据库内网域名遵循命名规范
业务名称:xxx
线上环境:dj.xxx.db
开发环境:dj.xxx.rdb
测试环境:dj.xxx.tdb
从库在名称后加-s标识,备库在名称后加-ss标识 线上从库:dj.xxx-s.db 线上备库:dj.xxx-sss.db
(8)库名、表名、字段名:小写,下划线风格,不超过32个字符,必须见名知意,禁止拼音英文混用
(9)表名t_xxx,非唯一索引名idx_xxx,唯一索引名uniq_xxx
三、表设计规范
(10)单实例表数目必须小于500
(11)单表列数目必须小于30
(12)表必须有主键,例如自增主键
解读:
a)主键递增,数据行写入可以提高插入性能,可以避免page分裂,减少表碎片提升空间和内存的使用 b)主键要选择较短的数据类型, Innodb引擎普通索引都会保存主键的值,较短的数据类型可以有效的减少索引的磁盘空间,提高索引的缓存效率 c) 无主键的表删除,在row模式的主从架构,会导致备库夯住
(13)禁止使用外键,如果有外键完整性约束,需要应用程序控制
解读:外键会导致表与表之间耦合,update与delete操作都会涉及相关联的表,十分影响 sql 的性能,甚至会造成死锁。高并发情况下容易造成数据库性能,大数据高并发业务场景数据库使用以性能优先
四、字段设计规范
(14)必须把字段定义为NOT NULL并且提供默认值
解读: a)null的列使索引/索引统计/值比较都更加复杂,对 MySQL 来说更难优化 b)null 这种类型MySQL内部需要进行特殊处理,增加数据库处理记录的复杂性;同等条件下,表中有较多空字段的时候,数据库的处理性能会降低很多 c)null值需要更多的存储空,无论是表还是索引中每行中的null的列都需要额外的空间来标识 d)对null 的处理时候,只能采用is null或is not null,而不能采用=、in、<、<>、!=、not in这些操作符号。如:where name!=’shenjian’,如果存在name为null值的记录,查询结果就不会包含name为null值的记录
(15)禁止使用TEXT、BLOB类型
解读:会浪费更多的磁盘和内存空间,非必要的大量的大字段查询会淘汰掉热数据,导致内存命中率急剧降低,影响数据库性能
(16)禁止使用小数存储货币
解读:使用整数吧,小数容易导致钱对不上
(17)必须使用varchar(20)存储手机号
解读: a)涉及到区号或者国家代号,可能出现+-() b)手机号会去做数学运算么? c)varchar可以支持模糊查询,例如:like“138%”
(18)禁止使用ENUM,可使用TINYINT代替
解读: a)增加新的ENUM值要做DDL操作 b)ENUM的内部实际存储就是整数,你以为自己定义的是字符串?
五、索引设计规范
(19)单表索引建议控制在5个以内
(20)单索引字段数不允许超过5个
解读:字段超过5个时,实际已经起不到有效过滤数据的作用了
(21)禁止在更新十分频繁、区分度不高的属性上建立索引
解读: a)更新会变更B+树,更新频繁的字段建立索引会大大降低数据库性能 b)“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似
(22)建立组合索引,必须把区分度高的字段放在前面
解读:能够更加有效的过滤数据
六、SQL使用规范
(23)禁止使用SELECT *,只获取必要的字段,需要显示说明列属性
解读: a)读取不需要的列会增加CPU、IO、NET消耗 b)不能有效的利用覆盖索引 c)使用SELECT *容易在增加或者删除字段后出现程序BUG
(24)禁止使用INSERT INTO t_xxx VALUES(xxx),必须显示指定插入的列属性
解读:容易在增加或者删除字段后出现程序BUG
(25)禁止使用属性隐式转换
解读:SELECT uid FROM t_user WHERE phone=13812345678 会导致全表扫描,而不能命中phone索引,猜猜为什么?(这个线上问题不止出现过一次)
(26)禁止在WHERE条件的属性上使用函数或者表达式
解读:SELECT uid FROM t_user WHERE from_unixtime(day)>='2017-02-15' 会导致全表扫描 正确的写法是:SELECT uid FROM t_user WHERE day>= unix_timestamp('2017-02-15 00:00:00')
(27)禁止负向查询,以及%开头的模糊查询
解读: a)负向查询条件:NOT、!=、<>、!<、!>、NOT IN、NOT LIKE等,会导致全表扫描 b)%开头的模糊查询,会导致全表扫描
(28)禁止大表使用JOIN查询,禁止大表使用子查询
解读:会产生临时表,消耗较多内存与CPU,极大影响数据库性能
(29)禁止使用OR条件,必须改为IN查询
解读:旧版本Mysql的OR查询是不能命中索引的,即使能命中索引,为何要让数据库耗费更多的CPU帮助实施查询优化呢?
(30)应用程序必须捕获SQL异常,并有相应处理
军规适用场景:并发量大、数据量大的互联网业务
军规:介绍内容
解读:讲解原因,解读比军规更重要
写在最后的话
总是在灾难发生后,才想起容灾的重要性;
总是在吃过亏后,才记得曾经有人提醒过。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 数据库设计30条军规
- 宜信的 105 条数据库军规
- 大厂 Redis 性能优化的 13 条军规!收好了
- JS性能优化38条"军规",2019年呕心力作
- Flutter到家助手实践
- 京东到家订单派发的技术实战
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
大数据供应链
娜达·R·桑德斯 (Nada R. Sanders) / 丁晓松 / 中国人民大学出版社 / 2015-7-1 / CNY 55.00
第一本大数据供应链落地之道的权威著作,全球顶级供应链管理专家娜达·桑德斯博士聚焦传统供应链模式向大数据转型,助力工业4.0时代智能供应链构建。 在靠大数据驱动供应链处于领先地位的企业中,45% 是零售商,如沃尔玛、亚马逊,而22%是快消企业,如戴尔电脑。他们都前所未有地掌控了自己的供应链。在库存管理、订单履行率、原材料和产品交付上具有更为广阔的视野。利用具有预见性的大数据分析结果,可以使供需......一起来看看 《大数据供应链》 这本书的介绍吧!