内容简介:Anaconda 4.4.0 发布,Python 科学计算包
Anaconda 是一个用于科学计算的 Python 发行版,软件支持 Linux, Mac, Windows, 整合众多流行的科学计算、数据分析等 Python 包。
详细更新记录如下:
Highlights:
-
add support for the ppc64le (POWER8 LE used by IBM Power Systems and OpenPOWER servers) machine types
Other changes:
-
On Windows, the PATH environment variable is no longer changed by default, as this can cause trouble with other software. The recommended approach is to instead use Anaconda Navigator or the Anaconda Command Prompt (located in the Start Menu under “Anaconda”) when you wish to use Anaconda software. Also, Anaconda will always be added to the front of PATH, for either system or user mode. (Previously it was appended to the system path.)
-
improve cp_acp support for install path on Windows
-
updated 80 packages in the installer (and their dependencies)
-
added distributed and pyodbc to the installers
-
apply pycrypto patch for CVE-2013-7439
-
end support for CentOS 5. CentOS 6 is now the minimum supported version.
Updates:
-
alabaster from 0.7.9 to 0.7.10
-
anaconda-client from 1.6.0 to 1.6.3
-
anaconda-navigator from 1.5.0 to 1.6.2
-
anaconda-project from 0.4.1 to 0.6.0
-
astropy from 1.3 to 1.3.2
-
babel from 2.3.4 to 2.4.0
-
beautifulsoup4 from 4.5.3 to 4.6.0
-
bokeh from 0.12.4 to 0.12.5
-
boto from 2.45.0 to 2.46.1
-
bottleneck from 1.2.0 to 1.2.1
-
cffi from 1.9.1 to 1.10.0
-
chardet from 2.3.0 to 3.0.3
-
colorama from 0.3.7 to 0.3.9
-
conda from 4.3.14 to 4.3.21
-
contextlib2 from 0.5.4 to 0.5.5
-
cryptography from 1.7.1 to 1.8.1
-
dask from 0.13.0 to 0.14.3
-
flask from 0.12 to 0.12.2
-
futures from 3.0.5 to 3.1.1
-
greenlet from 0.4.11 to 0.4.12
-
h5py from 2.6.0 to 2.7.0
-
hdf5 from 1.8.15.1 to 1.8.17
-
idna from 2.2 to 2.5
-
ipykernel from 4.5.2 to 4.6.1
-
ipython from 5.1.0 to 5.3.0
-
ipython_genutils from 0.1.0 to 0.2.0
-
ipywidgets from 5.2.2 to 6.0.0
-
jedi from 0.9.0 to 0.10.2
-
jinja2 from 2.9.4 to 2.9.6
-
jsonschema from 2.5.1 to 2.6.0
-
jupyter_client from 4.4.0 to 5.0.1
-
jupyter_console from 5.0.0 to 5.1.0
-
jupyter_core from 4.2.1 to 4.3.0
-
llvmlite from 0.15.0 to 0.18.0
-
lxml from 3.7.2 to 3.7.3
-
matplotlib from 2.0.0 to 2.0.2
-
menuinst from 1.4.4 to 1.4.7
-
mistune from 0.7.3 to 0.7.4
-
nbconvert from 4.2.0 to 5.1.1
-
nbformat from 4.2.0 to 4.3.0
-
nltk from 3.2.2 to 3.2.3
-
notebook from 4.3.1 to 5.0.0
-
numba from 0.30.1 to 0.33.0
-
numpy from 1.11.3 to 1.12.1
-
numexpr from 2.6.1 to 2.6.2
-
openpyxl from 2.4.1 to 2.4.7
-
openssl from 1.0.2k to 1.0.2l
-
pandas from 0.19.2 to 0.20.1
-
partd from 0.3.7 to 0.3.8
-
path.py from 10.0 to 10.3.1
-
pathlib2 from 2.2.0 to 2.2.1
-
pillow from 4.0.0 to 4.1.1
-
ply from 3.9 to 3.10
-
prompt_toolkit from 1.0.9 to 1.0.14
-
psutil from 5.0.1 to 5.2.2
-
py from 1.4.32 to 1.4.33
-
pycosat from 0.6.1 to 0.6.2
-
pygments from 2.1.3 to 2.2.0
-
pyopenssl from 16.2.0 to 17.0.0
-
pytables from 3.2.2 to 3.3.0
-
pytest from 3.0.5 to 3.0.7
-
python 3.5 from 3.5.2 to 3.5.3
-
python 3.6 from 3.6.0 to 3.6.1
-
pytz from 2016.10 to 2017.2
-
qtawesome from 0.4.3 to 0.4.4
-
qtconsole from 4.2.1 to 4.3.0
-
requests from 2.12.4 to 2.14.2
-
scandir from 1.4 to 1.5
-
scikit-image from 0.12.3 to 0.13.0
-
scipy from 0.18.1 to 0.19.0
-
sphinx from 1.5.1 to 1.5.6
-
spyder from 3.1.2 to 3.1.4
-
sqlalchemy from 1.1.5 to 1.1.9
-
statsmodels from 0.6.1 to 0.8.0
-
tornado from 4.4.2 to 4.5.1
-
traitlets from 4.3.1 to 4.3.2
-
werkzeug from 0.11.15 to 0.12.2
-
widgetsnbextension from 1.2.6 to 2.0.0
-
wrapt from 1.10.8 to 1.10.10
-
xlwings from 0.10.2 to 0.10.4
Added:
-
asn1crypto 0.22.0
-
bleach 1.5.0
-
distributed 1.16.3
-
html5lib 0.999
-
msgpack-python 0.4.8
-
navigator-updater 0.1.0
-
olefile 0.44
-
packaging 16.8
-
pandocfilters 1.4.1
-
pyodbc 4.0.16
-
pywavelets 0.5.2
-
sortedcollections 0.5.3
-
sortedcontainers 1.5.7
-
tblib 1.3.2
-
testpath 0.3
-
zict 0.1.2
Removed (from installers only):
-
argcomplete
-
chest
-
configobj
-
dill
-
pyasn1
-
redis
-
redis-py
-
sockjs-tornado
下载地址:
https://www.continuum.io/downloads
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Rust 的一些科学计算相关经验
- Python科学计算库之Numpy
- 【强化学习】数据科学,从计算到推理
- 如何在计算机上配置数据科学开发环境
- [python][科学计算][numpy]使用指南
- [python][科学计算][matplotlib]使用指南
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
神经网络与机器学习(原书第3版)
[加] Simon Haykin / 申富饶、徐烨、郑俊、晁静 / 机械工业出版社 / 2011-3 / 79.00元
神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探......一起来看看 《神经网络与机器学习(原书第3版)》 这本书的介绍吧!