拜托,面试请不要再问我TCC分布式事务的实现原理!

栏目: 服务器 · 发布时间: 6年前

内容简介:欢迎关注个人公众号:石杉的架构笔记(ID:shishan100)周一至五早8点半!精品技术文章准时送上!一、写在前面

欢迎关注个人公众号:石杉的架构笔记(ID:shishan100)

周一至五早8点半!精品技术文章准时送上!

目录

一、写在前面

二、业务场景介绍

三、进一步思考

四、落地实现TCC分布式事务

(1)TCC实现阶段一:Try

(2)TCC实现阶段二:Confirm

(3)TCC实现阶段三:Cancel

五、总结与思考

一、写在前面

之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下。很多朋友看了不少文章,还是不知道分布式事务到底怎么回事,在项目里到底如何使用。

所以咱们这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是TCC分布式事务。

首先说一下,这里可能会牵扯到一些Spring Cloud的原理,如果有不太清楚的同学,可以参考之前的文章:《拜托,面试请不要再问我Spring Cloud底层原理!》。

二、业务场景介绍

咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景。

那对一个订单支付之后,我们需要做下面的步骤:

  • 更改订单的状态为“已支付”
  • 扣减商品库存
  • 给会员增加积分
  • 创建销售出库单通知仓库发货

这是一系列比较真实的步骤,无论大家有没有做过电商系统,应该都能理解。

拜托,面试请不要再问我TCC分布式事务的实现原理!

三、进一步思考

好,业务场景有了,现在我们要更进一步,实现一个TCC分布式事务的效果。

什么意思呢?也就是说,订单服务-修改订单状态,库存服务-扣减库存,积分服务-增加积分,仓储服务-创建销售出库单。

上述这几个步骤,要么一起成功,要么一起失败, 必须是一个整体性的事务

举个例子,现在订单的状态都修改为“已支付”了,结果库存服务扣减库存失败。那个商品的库存原来是100件,现在卖掉了2件,本来应该是98件了。

结果呢?由于库存服务操作数据库异常,导致库存数量还是100。这不是在坑人么,当然不能允许这种情况发生了!

但是如果你不用TCC分布式事务方案的话,就用个Spring Cloud开发这么一个微服务系统,很有可能会干出这种事儿来。

我们来看看下面的这个图,直观的表达了上述的过程。

拜托,面试请不要再问我TCC分布式事务的实现原理!

所以说,我们有必要使用TCC分布式事务机制来保证各个服务形成一个整体性的事务。

上面那几个步骤,要么全部成功,如果任何一个服务的操作失败了,就全部一起回滚,撤销已经完成的操作。

比如说库存服务要是扣减库存失败了,那么订单服务就得撤销那个修改订单状态的操作,然后得停止执行增加积分和通知出库两个操作。

说了那么多,老规矩,给大家上一张图,大伙儿顺着图来直观的感受一下。

拜托,面试请不要再问我TCC分布式事务的实现原理!

四、落地实现TCC分布式事务

那么现在到底要如何来实现一个TCC分布式事务,使得各个服务,要么一起成功?要么一起失败呢?

大家稍安勿躁,我们这就来一步一步的分析一下。咱们就以一个Spring Cloud开发系统作为背景来解释。

1、TCC实现阶段一:Try

首先,订单服务那儿,他的代码大致来说应该是这样子的:

拜托,面试请不要再问我TCC分布式事务的实现原理!

如果你之前看过Spring Cloud架构原理那篇文章,同时对Spring Cloud有一定的了解的话,应该是可以理解上面那段代码的。

其实就是订单服务完成本地数据库操作之后,通过Spring Cloud的Feign来调用其他的各个服务罢了。

但是光是凭借这段代码,是不足以实现TCC分布式事务的啊?!兄弟们,别着急,我们对这个订单服务修改点儿代码好不好。

首先,上面那个订单服务先把自己的状态修改为: OrderStatus.UPDATING

这是啥意思呢?也就是说,在pay()那个方法里,你别直接把订单状态修改为已支付啊!你先把订单状态修改为 UPDATING ,也就是修改中的意思。

这个状态是个没有任何含义的这么一个状态,代表有人正在修改这个状态罢了。

然后呢,库存服务直接提供的那个reduceStock()接口里,也别直接扣减库存啊,你可以是 冻结掉库存

举个例子,本来你的库存数量是100,你别直接100 - 2 = 98,扣减这个库存!

你可以把可销售的库存:100 - 2 = 98,设置为98没问题,然后在一个单独的冻结库存的字段里,设置一个2。也就是说,有2个库存是给冻结了。

积分服务的addCredit()接口也是同理,别直接给用户增加会员积分。你可以先在积分表里的一个 预增加积分字段 加入积分。

比如:用户积分原本是1190,现在要增加10个积分,别直接1190 + 10 = 1200个积分啊!

你可以保持积分为1190不变,在一个预增加字段里,比如说prepare_add_credit字段,设置一个10,表示有10个积分准备增加。

仓储服务的saleDelivery()接口也是同理啊,你可以先创建一个销售出库单,但是这个销售出库单的状态是“ UNKNOWN ”。

也就是说,刚刚创建这个销售出库单,此时还不确定他的状态是什么呢!

上面这套改造接口的过程,其实就是所谓的TCC分布式事务中的第一个T字母代表的阶段,也就是 Try阶段

总结上述过程,如果你要实现一个TCC分布式事务,首先你的业务的主流程以及各个接口提供的业务含义,不是说直接完成那个业务操作,而是完成一个Try的操作。

这个操作,一般都是锁定某个资源,设置一个预备类的状态,冻结部分数据,等等,大概都是这类操作。

咱们来一起看看下面这张图,结合上面的文字,再来捋一捋这整个过程。

拜托,面试请不要再问我TCC分布式事务的实现原理!

2、TCC实现阶段二:Confirm

然后就分成两种情况了,第一种情况是比较理想的,那就是各个服务执行自己的那个Try操作,都执行成功了,bingo!

这个时候,就需要依靠 TCC分布式事务框架 来推动后续的执行了。

这里简单提一句,如果你要玩儿TCC分布式事务,必须引入一款TCC分布式事务框架,比如国内开源的 ByteTCC、himly、tcc-transaction。

否则的话,感知各个阶段的执行情况以及推进执行下一个阶段的这些事情,不太可能自己手写实现,太复杂了。

如果你在各个服务里引入了一个TCC分布式事务的框架, 订单服务里内嵌的那个TCC分布式事务框架可以感知到 ,各个服务的Try操作都成功了。

此时,TCC分布式事务框架会控制进入TCC下一个阶段,第一个C阶段,也就是 Confirm阶段

为了实现这个阶段,你需要在各个服务里再加入一些代码。

比如说, 订单服务 里,你可以加入一个Confirm的逻辑,就是正式把订单的状态设置为“已支付”了,大概是类似下面这样子:

拜托,面试请不要再问我TCC分布式事务的实现原理!

库存服务 也是类似的,你可以有一个InventoryServiceConfirm类,里面提供一个reduceStock()接口的Confirm逻辑,这里就是将之前冻结库存字段的2个库存扣掉变为0。

这样的话,可销售库存之前就已经变为98了,现在冻结的2个库存也没了,那就正式完成了库存的扣减。

积分服务 也是类似的,可以在积分服务里提供一个CreditServiceConfirm类,里面有一个addCredit()接口的Confirm逻辑,就是将预增加字段的10个积分扣掉,然后加入实际的会员积分字段中,从1190变为1120。

仓储服务 也是类似,可以在仓储服务中提供一个WmsServiceConfirm类,提供一个saleDelivery()接口的Confirm逻辑,将销售出库单的状态正式修改为“已创建”,可以供仓储管理人员查看和使用,而不是停留在之前的中间状态“UNKNOWN”了。

好了,上面各种服务的Confirm的逻辑都实现好了,一旦订单服务里面的TCC分布式事务框架感知到各个服务的Try阶段都成功了以后,就会执行各个服务的Confirm逻辑。

订单服务内的TCC事务框架会负责跟其他各个服务内的TCC事务框架进行通信,依次调用各个服务的Confirm逻辑。然后,正式完成各个服务的所有业务逻辑的执行。

同样,给大家来一张图,顺着图一起来看看整个过程。

拜托,面试请不要再问我TCC分布式事务的实现原理!

3、TCC实现阶段三:Cancel

好,这是比较正常的一种情况,那如果是异常的一种情况呢?

举个例子:在Try阶段,比如积分服务吧,他执行出错了,此时会怎么样?

那订单服务内的TCC事务框架是可以感知到的,然后他会决定对整个TCC分布式事务进行回滚。

也就是说,会执行各个服务的 第二个C阶段,Cancel阶段

同样,为了实现这个Cancel阶段,各个服务还得加一些代码。

首先 订单服务 ,他得提供一个OrderServiceCancel的类,在里面有一个pay()接口的Cancel逻辑,就是可以将订单的状态设置为“CANCELED”,也就是这个订单的状态是已取消。

库存服务 也是同理,可以提供reduceStock()的Cancel逻辑,就是将冻结库存扣减掉2,加回到可销售库存里去,98 + 2 = 100。

积分服务 也需要提供addCredit()接口的Cancel逻辑,将预增加积分字段的10个积分扣减掉。

仓储服务 也需要提供一个saleDelivery()接口的Cancel逻辑,将销售出库单的状态修改为“CANCELED”设置为已取消。

然后这个时候,订单服务的TCC分布式事务框架只要感知到了任何一个服务的Try逻辑失败了,就会跟各个服务内的TCC分布式事务框架进行通信,然后调用各个服务的Cancel逻辑。

大家看看下面的图,直观的感受一下。

拜托,面试请不要再问我TCC分布式事务的实现原理!

五、总结与思考

好了,兄弟们,聊到这儿,基本上大家应该都知道TCC分布式事务具体是怎么回事了!

总结一下,你要玩儿TCC分布式事务的话:

首先需要选择某种TCC分布式事务框架 ,各个服务里就会有这个TCC分布式事务框架在运行。

然后你原本的一个接口,要改造为3个逻辑,Try-Confirm-Cancel

  • 先是服务调用链路依次执行Try逻辑
  • 如果都正常的话,TCC分布式事务框架推进执行Confirm逻辑,完成整个事务
  • 如果某个服务的Try逻辑有问题,TCC分布式事务框架感知到之后就会推进执行各个服务的Cancel逻辑,撤销之前执行的各种操作

这就是所谓的 TCC分布式事务。

TCC分布式事务的核心思想,说白了,就是当遇到下面这些情况时,

  • 某个服务的数据库宕机了
  • 某个服务自己挂了
  • 那个服务的 redis 、elasticsearch、MQ等基础设施故障了
  • 某些资源不足了,比如说库存不够这些

先来Try一下,不要把业务逻辑完成,先试试看,看各个服务能不能基本正常运转,能不能先冻结我需要的资源。

如果Try都ok,也就是说,底层的数据库、redis、elasticsearch、MQ都是可以写入数据的,并且你保留好了需要使用的一些资源(比如冻结了一部分库存)。

接着,再执行各个服务的Confirm逻辑,基本上Confirm就可以很大概率保证一个分布式事务的完成了。

那如果Try阶段某个服务就失败了,比如说底层的数据库挂了,或者redis挂了,等等。

此时就自动执行各个服务的Cancel逻辑,把之前的Try逻辑都回滚,所有服务都不要执行任何设计的业务逻辑。 保证大家要么一起成功,要么一起失败

写到这里,本文差不多该结束了。等一等,你有没有想到一个问题?

如果有一些意外的情况发生了,比如说订单服务突然挂了,然后再次重启,TCC分布式事务框架是 如何保证之前没执行完的分布式事务继续执行的呢?

所以,TCC事务框架都是要记录一些分布式事务的活动日志的,可以在磁盘上的日志文件里记录,也可以在数据库里记录。保存下来分布式事务运行的各个阶段和状态。

问题还没完,万一某个服务的Cancel或者Confirm逻辑执行一直失败怎么办呢?

那也很简单,TCC事务框架会通过活动日志记录各个服务的状态。

举个例子,比如发现某个服务的Cancel或者Confirm一直没成功,会不停的重试调用他的Cancel或者Confirm逻辑,务必要他成功!

当然了,如果你的代码没有写什么bug,有充足的测试,而且Try阶段都基本尝试了一下,那么其实一般Confirm、Cancel都是可以成功的!

最后,再给大家来一张图,来看看给我们的业务,加上分布式事务之后的整个执行流程:

拜托,面试请不要再问我TCC分布式事务的实现原理!

不少大公司里,其实都是自己研发TCC分布式事务框架的,专门在公司内部使用,比如我们就是这样。

不过如果自己公司没有研发TCC分布式事务框架的话,那一般就会选用开源的框架。

这里笔者给大家推荐几个比较不错的框架,都是咱们国内自己开源出去的: ByteTCC,tcc-transaction,himly

大家有兴趣的可以去他们的github地址,学习一下如何使用,以及如何跟Spring Cloud、Dubbo等服务框架整合使用。

只要把那些框架整合到你的系统里,很容易就可以实现上面那种奇妙的TCC分布式事务的效果了。

下一篇文章,我们来讲讲可靠消息最终一致性方案实现的分布式事务,同时聊聊在实际生产中遇到的运用该方案的高可用保障架构。

具体参见: 《最终一致性分布式事务的99.99%高可用保障生产实践》

如有收获,请帮忙转发,您的鼓励是作者最大的动力,谢谢!

一大波微服务、分布式、高并发、高可用的原创系列

文章正在路上, 欢迎扫描下方二维码 ,持续关注:

拜托,面试请不要再问我TCC分布式事务的实现原理!

石杉的架构笔记(id:shishan100)

十余年BAT架构经验倾囊相授

作者:石杉的架构笔记

链接:https://juejin.im/post/5bec278c5188253e64332c76

来源:掘金

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


以上所述就是小编给大家介绍的《拜托,面试请不要再问我TCC分布式事务的实现原理!》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Wireshark网络分析实战

Wireshark网络分析实战

[以色列 Yoram Orzach / 古宏霞、孙余强 / 人民邮电出版社 / 2015-1 / 79.00元

本书采用步骤式为读者讲解了一些使用Wireshark来解决网络实际问题的技巧。 本书共分为14章,其内容涵盖了Wireshark的基础知识,抓包过滤器的用法,显示过滤器的用法,基本/高级信息统计工具的用法,Expert Info工具的用法,Wiresahrk在Ethernet、LAN及无线LAN中的用法,ARP和IP故障分析,TCP/UDP故障分析,HTTP和DNS故障分析,企业网应用程序行......一起来看看 《Wireshark网络分析实战》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

html转js在线工具
html转js在线工具

html转js在线工具