Golang Map 源码阅读

栏目: Go · 发布时间: 5年前

内容简介:我们知道哈希表解决冲突一般要么是开放定址法,要么是再哈希法。Golang采用的是 第一种,但是实现上和教科书式的实现方式不同。这也是很有趣的一个东西,就像之前 看Python的通常教科书式的实现方式是,hash值重复的节点组成一个链表,首先我们根据hash值 定位到大概在哪里,然后遍历这个链表。这样有一个缺点,就是不知道这个链表到底有多长。Golang的实现避免了这种问题,就是采用桶的方式,也就是每个坑后面接固定长度的键值对。

我们知道哈希表解决冲突一般要么是开放定址法,要么是再哈希法。Golang采用的是 第一种,但是实现上和教科书式的实现方式不同。这也是很有趣的一个东西,就像之前 看 Pythondeque 一样,和教科书不一样,非常高效的实现方式。

通常教科书式的实现方式是,hash值重复的节点组成一个链表,首先我们根据hash值 定位到大概在哪里,然后遍历这个链表。这样有一个缺点,就是不知道这个链表到底有多长。

Golang的实现避免了这种问题,就是采用桶的方式,也就是每个坑后面接固定长度的键值对。

// A header for a Go map.
type hmap struct {
    // Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and
    // ../reflect/type.go. Don't change this structure without also changing that code!
    count     int // # live cells == size of map.  Must be first (used by len() builtin)
    flags     uint8
    B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
    noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
    hash0     uint32 // hash seed

    buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
    oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
    nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

    extra *mapextra // optional fields
}

// mapextra holds fields that are not present on all maps.
type mapextra struct {
    // If both key and value do not contain pointers and are inline, then we mark bucket
    // type as containing no pointers. This avoids scanning such maps.
    // However, bmap.overflow is a pointer. In order to keep overflow buckets
    // alive, we store pointers to all overflow buckets in hmap.overflow.
    // Overflow is used only if key and value do not contain pointers.
    // overflow[0] contains overflow buckets for hmap.buckets.
    // overflow[1] contains overflow buckets for hmap.oldbuckets.
    // The indirection allows to store a pointer to the slice in hiter.
    overflow [2]*[]*bmap

    // nextOverflow holds a pointer to a free overflow bucket.
    nextOverflow *bmap
}

// A bucket for a Go map.
type bmap struct {
    // tophash generally contains the top byte of the hash value
    // for each key in this bucket. If tophash[0] < minTopHash,
    // tophash[0] is a bucket evacuation state instead.
    tophash [bucketCnt]uint8
    // Followed by bucketCnt keys and then bucketCnt values.
    // NOTE: packing all the keys together and then all the values together makes the
    // code a bit more complicated than alternating key/value/key/value/... but it allows
    // us to eliminate padding which would be needed for, e.g., map[int64]int8.
    // Followed by an overflow pointer.
}

不过看到这里我就想吐槽了,Golang虽然标准库设计的很科学,但是很多命名实在是太简单了, 不方便记忆。估计只有写的人自己才能一眼反应过来吧。例如 B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items) 要是我的话,会选择稍微长一点,更容易记住的名字。

buckets 是一个指针,指向的就是 *bmap 这种键值对的数组。 tophash[0] 是数组 里的第一个值,相当于链表里的第一个。不过如果冲突到了多于8个怎么办?所以 里面还有 overflow 这样的指针,指向两个 *[]*bmap slice。这样就相当于链表了, 假设冲突已经到了这种层次的话。

下面来看看Golang的map是怎么查找的,我们知道 Go 的一个坑点就是字典不管找没找到, 都有返回,默认返回value对应类型的 zero object 。所以要用类似 a, ok := m["hello"] 的形式,然后判断 ok 。麻烦。

// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
// it will return a reference to the zero object for the value type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
    if raceenabled && h != nil {
        callerpc := getcallerpc(unsafe.Pointer(&t))
        pc := funcPC(mapaccess1)
        racereadpc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled && h != nil {
        msanread(key, t.key.size)
    }
    // 如果h里面啥也没有的话,直接返回
    if h == nil || h.count == 0 {
        return unsafe.Pointer(&zeroVal[0])
    }
    // 原来上面结构体里flags是用来做读写状态标识的
    if h.flags&hashWriting != 0 {
        throw("concurrent map read and map write")
    }
    // t是map的类型,Go是编译型语言,所以在编译的时候应该就确定好了
    // 把key的类型确定好,hash算法固定好,直接用就好了
    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))
    m := uintptr(1)<<h.B - 1
    b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
    if c := h.oldbuckets; c != nil {
        if !h.sameSizeGrow() {
            // There used to be half as many buckets; mask down one more power of two.
            m >>= 1
        }
        oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
        if !evacuated(oldb) {
            b = oldb
        }
    }
    // 算出在哪个桶,哈希值取余?
    top := uint8(hash >> (sys.PtrSize*8 - 8))
    if top < minTopHash {
        top += minTopHash
    }
    // 依次遍历,找出对象
    for {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            if t.indirectkey {
                k = *((*unsafe.Pointer)(k))
            }
            if alg.equal(key, k) {
                v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
                if t.indirectvalue {
                    v = *((*unsafe.Pointer)(v))
                }
                return v
            }
        }
        b = b.overflow(t)
        if b == nil {
            return unsafe.Pointer(&zeroVal[0])
        }
    }
}

还有一个 mapaccess2 不知道是干啥的。 mapaccessK 说是给iter用的。 接下来看看赋值操作,赋值操作其实就是先查找,找到了覆盖,没找到新建:

// Like mapaccess, but allocates a slot for the key if it is not present in the map.
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
    if h == nil {
        panic(plainError("assignment to entry in nil map"))
    }
    if raceenabled {
        callerpc := getcallerpc(unsafe.Pointer(&t))
        pc := funcPC(mapassign)
        racewritepc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled {
        msanread(key, t.key.size)
    }
    if h.flags&hashWriting != 0 {
        throw("concurrent map writes")
    }
    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))

    // Set hashWriting after calling alg.hash, since alg.hash may panic,
    // in which case we have not actually done a write.
    h.flags |= hashWriting

    if h.buckets == nil {
        h.buckets = newarray(t.bucket, 1)
    }

again:
    bucket := hash & (uintptr(1)<<h.B - 1)
    if h.growing() {
        growWork(t, h, bucket)
    }
    b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
    top := uint8(hash >> (sys.PtrSize*8 - 8))
    if top < minTopHash {
        top += minTopHash
    }

    var inserti *uint8
    var insertk unsafe.Pointer
    var val unsafe.Pointer
    for {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                if b.tophash[i] == empty && inserti == nil {
                    inserti = &b.tophash[i]
                    insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
                    val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
                }
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            if t.indirectkey {
                k = *((*unsafe.Pointer)(k))
            }
            if !alg.equal(key, k) {
                continue
            }
            // 如果找到了
            // already have a mapping for key. Update it.
            if t.needkeyupdate {
                typedmemmove(t.key, k, key)
            }
            val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
            goto done
        }
        ovf := b.overflow(t)
        if ovf == nil {
            break
        }
        b = ovf
    }

    // 遍历完了,没找到,那就新建,前面记好了是否有空余处可以插入
    // Did not find mapping for key. Allocate new cell & add entry.

    // If we hit the max load factor or we have too many overflow buckets,
    // and we're not already in the middle of growing, start growing.
    if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
        hashGrow(t, h)
        goto again // Growing the table invalidates everything, so try again
    }

    if inserti == nil {
        // all current buckets are full, allocate a new one.
        newb := h.newoverflow(t, b)
        inserti = &newb.tophash[0]
        insertk = add(unsafe.Pointer(newb), dataOffset)
        val = add(insertk, bucketCnt*uintptr(t.keysize))
    }

    // store new key/value at insert position
    if t.indirectkey {
        kmem := newobject(t.key)
        *(*unsafe.Pointer)(insertk) = kmem
        insertk = kmem
    }
    if t.indirectvalue {
        vmem := newobject(t.elem)
        *(*unsafe.Pointer)(val) = vmem
    }
    typedmemmove(t.key, insertk, key)
    *inserti = top
    h.count++

done:
    if h.flags&hashWriting == 0 {
        throw("concurrent map writes")
    }
    h.flags &^= hashWriting
    if t.indirectvalue {
        val = *((*unsafe.Pointer)(val))
    }
    return val
}

删除操作操作也是类似,先找,找到了删除,没找到就没动作:

func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
    if raceenabled && h != nil {
        callerpc := getcallerpc(unsafe.Pointer(&t))
        pc := funcPC(mapdelete)
        racewritepc(unsafe.Pointer(h), callerpc, pc)
        raceReadObjectPC(t.key, key, callerpc, pc)
    }
    if msanenabled && h != nil {
        msanread(key, t.key.size)
    }
    if h == nil || h.count == 0 {
        return
    }
    if h.flags&hashWriting != 0 {
        throw("concurrent map writes")
    }

    alg := t.key.alg
    hash := alg.hash(key, uintptr(h.hash0))

    // Set hashWriting after calling alg.hash, since alg.hash may panic,
    // in which case we have not actually done a write (delete).
    h.flags |= hashWriting

    bucket := hash & (uintptr(1)<<h.B - 1)
    if h.growing() {
        growWork(t, h, bucket)
    }
    b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
    top := uint8(hash >> (sys.PtrSize*8 - 8))
    if top < minTopHash {
        top += minTopHash
    }
    for {
        for i := uintptr(0); i < bucketCnt; i++ {
            if b.tophash[i] != top {
                continue
            }
            k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
            k2 := k
            if t.indirectkey {
                k2 = *((*unsafe.Pointer)(k2))
            }
            if !alg.equal(key, k2) {
                continue
            }
            if t.indirectkey {
                *(*unsafe.Pointer)(k) = nil
            } else {
                typedmemclr(t.key, k)
            }
            v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize))
            if t.indirectvalue {
                *(*unsafe.Pointer)(v) = nil
            } else {
                typedmemclr(t.elem, v)
            }
            // 标记为空
            b.tophash[i] = empty
            h.count--
            goto done
        }
        b = b.overflow(t)
        if b == nil {
            goto done
        }
    }

done:
    if h.flags&hashWriting == 0 {
        throw("concurrent map writes")
    }
    h.flags &^= hashWriting
}

综上,我们发现,Golang的map是不能并发读写的,只是简单的依靠设置flag, 然后检查并且 throw 来完成的,太不安全了,所以有了 sync.Map 可以愉快的并发读写了。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

轻松学算法

轻松学算法

赵烨 / 电子工业出版社 / 2016-7 / 69.00元

《轻松学算法——互联网算法面试宝典》共分为12 个章节,首先介绍了一些基础的数据结构,以及常用的排序算法和查找算法;其次介绍了两个稍微复杂一些的数据结构——树和图,还介绍了每种数据结构和算法的适用场景,之后是一些在工作与面试中的实际应用,以字符串、数组、查找等为例介绍了一些常见的互联网面试题及分析思路,便于读者了解这些思路,顺利地通过互联网公司的面试;最后介绍了一些常见的算法思想,便于读者对今后遇......一起来看看 《轻松学算法》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试