AI热潮的关键:深度学习不止深度神经网络

栏目: 数据库 · 发布时间: 7年前

内容简介:【编者按】本文原载于21世纪经济报,经亿欧网编辑,以供业内人士参考。

AI热潮的关键:深度学习不止深度神经网络

【编者按】 作为本轮AI的关键技术,深度学习不单只是深度神经网络模型本身。事实上,深度神经网络的发展痛点频频,包括稳定性和对设备的依赖性,以及调试复杂度困难等等。事实上,回归到 深度学习的本质问题, 前企学研界还有很多探索深度学习新的可能性。

本文原载于21世纪经济报,经亿欧网编辑,以供业内人士参考。

作为本轮人工智能热潮的关键技术,机器学习尤其是深度学习受到了热捧。一时间,人人嘴上挂着深度学习、神经网络等词汇,似乎不谈这一话题,便与智能时代脱节。

然而,无论开发者或科技企业,对深度学习恐怕存在一定误解。“如果问一下‘什么是深度学习’,绝大多数人的答案都会是:深度学习就是深度神经网络,甚至认为‘深度学习’就是‘深度神经网络’的同义词。”在2018英特尔人工智能大会上,南京大学计算机系主任、人工智能学院院长周志华直言现状。

这一观念其实是片面的。事实上,当前深度学习主流的深度神经网络模型本身,也存在着诸多问题。 “吃数据,吃机器,对开发者门槛要求高。”当谈及当前模型痛点时,一位深度学习领域相关开发者向记者直言。 另一位开发者则告诉记者,深度神经网络模型的效果稳定性也可能不如预期。

“Kaggle竞赛中有各种各样的任务,但在图像、视频、语音之外的很多任务上,比如订机票、订旅馆之类,还是传统机器学习技术(如随机森林或XGBoost)表现更好,尤其是涉及符号建模、离散建模、混合建模等问题。”周志华表示,“机器学习界早就很清楚‘没有免费的午餐’,也即任何一个模型可能只适用于一部分的任务,而另外一些任务是不适用的。”

这也就意味着,除深度神经网络模型之外,当前企学研界还有必要探索深度学习新的可能性。

痛点频频

深度学习是机器学习的一个技术分支。与机器学习其他技术流派所区别的是,当前以深度神经网络模型为代表的深度学习模型算法中,拥有许多层次,从而构成“深度”。

与传统机器学习方法相比,深度学习具有其优势。“如果以横轴为数据量,纵轴为模型有效性来看的话,传统机器学习模型随着数据量的增长而效果趋于平缓,深度神经网络模型则随着数据增长形成更高的有效性。”英特尔高级首席工程师、大数据技术全球 CTO 戴金权告诉记者。

之所以模型层级或说“深度”能够在近年来取得突破,源于神经网络中基本计算单元激活函数的连续可微性,导致梯度更加易于计算,而基于对梯度的调整,便可使用 BP 算法逐层训练出整个模型。

2006 年以前,人们不知道怎么训练出 5 层以上的神经网络,根本原因就是层数高了之后,使用 BP 算法的梯度就会消失,无法继续学习。”周志华介绍道,“后来 Geoffrey Hinton 做了很重要的工作,通过逐层训练来缓解梯度消失,才使得深层模型能够被训练出来。”

然而,正是因为深度神经网络模型是一个层级多、参数多的巨大系统,因此便存在海量的调参需求与相当的调参计算。“甚至有些技术工程师一天下来,其他的什么都没做,只是在调整参数,这是一个很常见的情况。”前述开发者向记者感慨道。

不仅是超量参数带来了调参难,随之也形成一系列问题。“比如,在做跨任务 ( 例如从图像到语音 ) 的时候,相关的调参经验基本没有借鉴作用,经验很难共享,”周志华表示。同时,结果的可重复性也非常难,“整个机器学习领域,深度学习的可重复性是最弱的。哪怕同样的数据和算法,只要参数设置不同,结果就不一样。”

此外,深度神经网络模型复杂度必须是事前指定的,然后才能用BP算法去加以训练。但这个过程中存在悖论:在没有解决任务之前,如何预先判定其复杂度?“所以实际上大家通常都是设置更大的复杂度。”周志华表示。

目前这一模型还存在许多别的问题,比如理论分析很困难,需要极大数据,黑箱模型等等。甚至有开发者向记者坦言,神经网络模型在有些领域应用很好,但在更多的领域,采用这一模型的效果不稳定,“如果样本数据量足够大,这一模型的准确率是很好的,但通常公司并没有那么多数据,计算也费劲。”

新的路径?

既然深度神经网络模型存在痛点,那么,在对其进行优化研究的同时,也不得不令人思考:是否存在其他深度学习模型的可能性?

这就涉及到深度学习的本质问题。事实上,深度神经网络的最重要的是特征学习 ( 表示学习 ) ,即计算机能够自行学习原始数据的特征、提取特征并表达出来,而这背后的核心是逐层处理。“与传统机器学习技术相比,深度学习抽象级别不同,深度学习可能拥有很高级别的抽象。”前述开发者向记者解释道,“计算出特征之后还会继续计算特征的特征,最终放到模型里。

另一个特质在于特征的内部转换。 “例如,决策树也是一种逐层处理,但达不到深度神经网络的效果,就在于它的复杂度不够,同时始终在同一个特征空间下进行,中间没有进行任何的特征变化。”周志华指出。

此外还需要保证充分的模型复杂度 “只有增加模型复杂度,学习能力才可能得以提升。”周志华指出,“逐层加工、特征内部变换、充分模型复杂度,满足这三条的深度学习模型,便能够取得成功。”

就此,周志华尝试提出深度神经网络模型之外的方法:深度森林模型。据介绍,该模型是一个基于树模型的方法,主要借用了集成学习中的想法。 “在许多不同任务上,它的模型所得结果可以说与深度神经网络高度接近。特别是在跨任务中,它的表现非常好,可以用同样一套参数,不再逐任务调参。”周志华指出。

“深度神经网络的底层是以神经网络为基础,进而扩展层级深度,深度森林也是类似的概念。”一位南京大学相关研究人士向记者表示,“在深度神经网络模型中,堆叠了大量神经元,而深度森林里,每一层神经元的位置变为森林。数据样本通过每个森林得到一个预测结果后,将结果作为下一层的输入。”

这样做的好处是,每经过一层“森林”,机器都会自动判断模型是否收敛,一旦达到正确性要求,模型就不会继续计算,“所以模型是可控的。”前述研究人士向记者强调,“深度神经网络则是必须把层级定好,然后利用算法求梯度。深度森林不需要优先制定层级,走了一定层级之后看验证效果,好的话就不用往后走了。”因此,它对计算资源的要求也不大,“在 CPU 上就可以跑。”

当然,作为一个最新提出的模型,深度森林还在接受各方的讨论。“就算法本身而言,虽然在训练效率、可解释性方面优于神经网络,但在超大数据下未必能达到或者超过深度学习中的CNN(卷积神经网络)。”一位业内人士向记者直言,“不过,这一理论的最大贡献可能在于,提出了一种有别于深度神经网络的深度结构,从而打破了业界对神经网络的迷信,为研究者提供了一个新的思路。”

一直以来,技术都是推动商业环境进化的重要因素,而目前最热的技术升级趋势,无疑是人工智能。当下,尽管人工智能行业本身已经进入了一个平稳的发展期,但它对于各行各业的赋能却正在以更热烈的姿态进行。

2018年11月30日上午,亿欧将在北京国贸大酒店举办“新技术·新动能创新者论坛”,以技术为核心要素,从行业角度出发,探讨新技术趋势下,企业如何把握升级机会、跟上时代节奏,在诸多竞争者中脱颖而出。

详情及报名链接: https://www.iyiou.com/post/ad/id/730

AI热潮的关键:深度学习不止深度神经网络


以上所述就是小编给大家介绍的《AI热潮的关键:深度学习不止深度神经网络》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Definitive Guide to HTML5 WebSocket

The Definitive Guide to HTML5 WebSocket

Vanessa Wang、Frank Salim、Peter Moskovits / Apress / 2013-3 / USD 26.30

The browser is, hands down, the most popular and ubiquitous deployment platform available to us today: virtually every computer, smartphone, tablet, and just about every other form factor imaginable c......一起来看看 《The Definitive Guide to HTML5 WebSocket》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

MD5 加密
MD5 加密

MD5 加密工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具