GO-net/http源码阅读

栏目: Go · 发布时间: 6年前

GO-net/http源码阅读

net/http处理Http请求的基本流程

GO-net/http源码阅读

Http包的三个关键类型

  1. Handler接口 :所有请求的处理器、路由ServeMux都满足该接口。

    // A Handler responds to an HTTP request.
    //
    // ServeHTTP should write reply headers and data to the ResponseWriter
    // and then return. Returning signals that the request is finished; it
    // is not valid to use the ResponseWriter or read from the
    // Request.Body after or concurrently with the completion of the
    // ServeHTTP call.
    //
    // Depending on the HTTP client software, HTTP protocol version, and
    // any intermediaries between the client and the Go server, it may not
    // be possible to read from the Request.Body after writing to the
    // ResponseWriter. Cautious handlers should read the Request.Body
    // first, and then reply.
    //
    // Except for reading the body, handlers should not modify the
    // provided Request.
    //
    // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    // that the effect of the panic was isolated to the active request.
    // It recovers the panic, logs a stack trace to the server error log,
    // and either closes the network connection or sends an HTTP/2
    // RST_STREAM, depending on the HTTP protocol. To abort a handler so
    // the client sees an interrupted response but the server doesn't log
    // an error, panic with the value ErrAbortHandler.
    type Handler interface {
        ServeHTTP(ResponseWriter, *Request) //路由具体实现
    }
  2. ServeMux结构体 :HTTP请求的多路转接器(路由),它负责将每一个接收到的请求的URL与一个注册模式的列表进行匹配,并调用和URL最匹配的模式的处理器。它内部用一个map来保存所有处理器Handler。

    type ServeMux struct {
        mu sync.RWMutex   //锁,由于请求涉及到并发处理,因此这里需要一个锁机制
        m  map[string]muxEntry  // 路由规则,一个string对应一个mux实体,这里的string就是注册的路由表达式
        hosts bool // 是否在任意的规则中带有host信息
    }

    其中的 muxEntry结构体 类型,则是保存了Handler请求处理器和匹配的模式字符串。

    type muxEntry struct {
        h        Handler // 这个路由表达式对应哪个handler
        pattern  string  //匹配字符串
    }
    • http包有一个包级别变量DefaultServeMux,表示默认路由:var DefaultServeMux = NewServeMux(),使用包级别的http.Handle()、http.HandleFunc()方法注册处理器时都是注册到该路由中。

      // NewServeMux allocates and returns a new ServeMux.
      func NewServeMux() *ServeMux { return new(ServeMux) }
      
      // DefaultServeMux is the default ServeMux used by Serve.
      var DefaultServeMux = &defaultServeMux
      
      var defaultServeMux ServeMux
    • ServeMux结构体有ServeHTTP()方法(满足Handler接口),主要用于间接调用它所保存的muxEntry中保存的Handler处理器的ServeHTTP()方法。
  3. 关注了上面两个结构体后就产生了一个问题,我们的请求处理函数并没有显式实现ServeHTTP(ResponseWriter, *Request),它是怎么能转换为Handler类型的对象?这里就涉及了第三个重要类型, HandlerFunc适配器

    // The HandlerFunc type is an adapter to allow the use of
    // ordinary functions as HTTP handlers. If f is a function
    // with the appropriate signature, HandlerFunc(f) is a
    // Handler that calls f.
    type HandlerFunc func(ResponseWriter, *Request)
    
    // ServeHTTP calls f(w, r).
    func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
        f(w, r)
    }
    • 自行定义的处理函数转换为Handler类型就是HandlerFunc调用之后的结果,这个类型默认就实现了ServeHTTP这个接口,即我们调用了HandlerFunc(f),强制类型转换f成为HandlerFunc类型,这样f就拥有了ServeHTTP方法。

HTTP服务器的执行流程

  1. 通过 http.ListenAndServe(addr string, handler Handler) 启动服务,通过给定函数构造Server类型对象,然后调用Server对象的 ListenAndServer 方法,并将该方法的返回值error返回给调用方。

    // ListenAndServe listens on the TCP network address addr and then calls
    // Serve with handler to handle requests on incoming connections.
    // Accepted connections are configured to enable TCP keep-alives.
    //
    // The handler is typically nil, in which case the DefaultServeMux is used.
    //
    // ListenAndServe always returns a non-nil error.
    func ListenAndServe(addr string, handler Handler) error {
        server := &Server{Addr: addr, Handler: handler}
        return server.ListenAndServe()
    }
  2. server.ListenAndServe() 内部调用 net.Listen("tcp", addr) ,该方法内部又调用 net.ListenTCP() 创建并返回一个net.Listener监听器ln。

    // ListenAndServe listens on the TCP network address srv.Addr and then
    // calls Serve to handle requests on incoming connections.
    // Accepted connections are configured to enable TCP keep-alives.
    //
    // If srv.Addr is blank, ":http" is used.
    //
    // ListenAndServe always returns a non-nil error. After Shutdown or Close,
    // the returned error is ErrServerClosed.
    func (srv *Server) ListenAndServe() error {
        if srv.shuttingDown() {
            return ErrServerClosed
        }
        addr := srv.Addr
        if addr == "" {
            addr = ":http"
        }
        ln, err := net.Listen("tcp", addr)
        if err != nil {
            return err
        }
        return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
    }
    • ln通过断言转换为了net.TCPListener类型,并将转换后的类型作为参数转换为tcpKeepAliveListener对象,然后将tcpKeepAliveListener对象传给srv.Serve()函数作为参数。
  3. TCPListener 实现了Listener接口,此处tcpKeepAliveListener重写了 Accept() 方法从而实现了Listener接口。

    // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
    // connections. It's used by ListenAndServe and ListenAndServeTLS so
    // dead TCP connections (e.g. closing laptop mid-download) eventually
    // go away.
    type tcpKeepAliveListener struct {
        *net.TCPListener
    }
    
    func (ln tcpKeepAliveListener) Accept() (net.Conn, error) {
        tc, err := ln.AcceptTCP()
        if err != nil {
            return nil, err
        }
        tc.SetKeepAlive(true) //发送心跳
        tc.SetKeepAlivePeriod(3 * time.Minute) //设置发送周期
        return tc, nil
    }
    • Accept() 函数首先调用TCPListener对象的AcceptTCP()函数获取一个TCP连接对象tc,然后tc调用SetKeepAlive(true),让操作系统为收到的每一个连接启动发送keepalive消息(心跳,为了保持连接不断开)。
  4. func (srv *Server) Serve(l net.Listener) error 函数处理接收到的客户端的请求信息。这个函数里有一个for{},首先通过Listener接收请求,其次创建一个Conn,最后单独开了一个goroutine,把这个请求的数据当做参数扔给这个conn去服务:go c.serve()。这个就是高并发体现了,用户的每一次请求都是在一个新的goroutine去服务,相互不影响。

    // Serve accepts incoming connections on the Listener l, creating a
    // new service goroutine for each. The service goroutines read requests and
    // then call srv.Handler to reply to them.
    //
    // HTTP/2 support is only enabled if the Listener returns *tls.Conn
    // connections and they were configured with "h2" in the TLS
    // Config.NextProtos.
    //
    // Serve always returns a non-nil error and closes l.
    // After Shutdown or Close, the returned error is ErrServerClosed.
    func (srv *Server) Serve(l net.Listener) error {
        if fn := testHookServerServe; fn != nil {
            fn(srv, l) // call hook with unwrapped listener
        }
    
        l = &onceCloseListener{Listener: l}
        defer l.Close()
    
        if err := srv.setupHTTP2_Serve(); err != nil {
            return err
        }
    
        if !srv.trackListener(&l, true) {
            return ErrServerClosed
        }
        defer srv.trackListener(&l, false)
    
        var tempDelay time.Duration     // how long to sleep on accept failure
        baseCtx := context.Background() // base is always background, per Issue 16220
        ctx := context.WithValue(baseCtx, ServerContextKey, srv) //新建一个context来管理每个连接conn的 Go 程
        for {
            rw, e := l.Accept() //调用tcpKeepAliveListener对象的 Accept() 方法
            if e != nil {
                select {
                case <-srv.getDoneChan():
                    return ErrServerClosed //退出Serve方法,并执行延迟调用(从缓存中删除当前监听器)
                default:
                }
                //如果发生了net.Error错误,则隔一段时间就重试一次,间隔时间每次翻倍,最大为1秒
                if ne, ok := e.(net.Error); ok && ne.Temporary() {
                    if tempDelay == 0 {
                        tempDelay = 5 * time.Millisecond
                    } else {
                        tempDelay *= 2
                    }
                    if max := 1 * time.Second; tempDelay > max {
                        tempDelay = max
                    }
                    srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
                    time.Sleep(tempDelay)
                    continue
                }
                return e
            }
            tempDelay = 0
            c := srv.newConn(rw) //该方法根据net.Conn、srv构造了一个新的http.conn类型
            c.setState(c.rwc, StateNew) // before Serve can return
            go c.serve(ctx)
        }
    }
  5. func (srv *Server) newConn(rwc net.Conn) *conn 创建一个conn对象,如果debugServerConnections为真,则通过newLoggingConn将rwc中的loggingConn的name信息包装一下,添加一部分信息。

    // debugServerConnections controls whether all server connections are wrapped
    // with a verbose logging wrapper.
    const debugServerConnections = false
    
    // Create new connection from rwc.
    func (srv *Server) newConn(rwc net.Conn) *conn {
        c := &conn{
            server: srv,
            rwc:    rwc,
        }
        if debugServerConnections {
            c.rwc = newLoggingConn("server", c.rwc)
        }
        return c
    }
  6. func (c *conn) setState(nc net.Conn, state ConnState) 通过传入一个连接和状态,根据状态的值改变服务器中该连接的追踪情况。

    func (c *conn) setState(nc net.Conn, state ConnState) {
        srv := c.server
        switch state {
        case StateNew:
            srv.trackConn(c, true)
        case StateHijacked, StateClosed:
            srv.trackConn(c, false)
        }
        if state > 0xff || state < 0 {
            panic("internal error")
        }
        packedState := uint64(time.Now().Unix()<<8) | uint64(state)
        atomic.StoreUint64(&c.curState.atomic, packedState)
        if hook := srv.ConnState; hook != nil {
            hook(nc, state)
        }
    }
  7. c.serve(ctx) 调用 func (c *conn) serve(ctx context.Context) 读取请求,然后根据conn内保存的server来构造一个serverHandler类型,并调用它的ServeHTTP()方法:serverHandler{c.server}.ServeHTTP(w, w.req)。 ServeHTTP 路由器接收到请求之后进行判断,如果是*那么关闭链接,不然调用mux.Handler(r)返回对应设置路由的处理Handler,然后执行h.ServeHTTP(w, r)。

    // ServeHTTP dispatches the request to the handler whose
    // pattern most closely matches the request URL.
    func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
        if r.RequestURI == "*" {
            if r.ProtoAtLeast(1, 1) {
                w.Header().Set("Connection", "close")
            }
            w.WriteHeader(StatusBadRequest)
            return
        }
        h, _ := mux.Handler(r)
        h.ServeHTTP(w, r)
    }
  8. h.ServeHTTP(w, r) 调用对应路由的handler的ServerHTTP接口,handler的ServerHTTP接口根据用户请求的URL和路由器里面存储的map去匹配的,当匹配到之后返回存储的handler,调用这个handler的ServeHTTP接口就可以执行到相应的函数。

    func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
        if r.Method != "CONNECT" {
            if p := cleanPath(r.URL.Path); p != r.URL.Path {
                _, pattern = mux.handler(r.Host, p)
                return RedirectHandler(p, StatusMovedPermanently), pattern
            }
        }    
        return mux.handler(r.Host, r.URL.Path)
    }
    
    func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
        mux.mu.RLock()
        defer mux.mu.RUnlock()
    
        // Host-specific pattern takes precedence over generic ones
        if mux.hosts {
            h, pattern = mux.match(host + path)
        }
        if h == nil {
            h, pattern = mux.match(path)
        }
        if h == nil {
            h, pattern = NotFoundHandler(), ""
        }
        return
    }
  9. http包自带了几个创建常用处理器的函数:FileServer,NotFoundHandler、RedirectHandler、StripPrefix、TimeoutHandler。而RedirectHandler函数就是用来重定向的:它返回一个请求处理器,该处理器会对每个请求都使用状态码code重定向到网址url。

    // RedirectHandler returns a request handler that redirects
    // each request it receives to the given url using the given
    // status code.
    //
    // The provided code should be in the 3xx range and is usually
    // StatusMovedPermanently, StatusFound or StatusSeeOther.
    func RedirectHandler(url string, code int) Handler {
        return &redirectHandler{url, code}
    }

GO Http执行流程

  • 首先调用Http.HandleFunc

    按顺序做了几件事:

    1 调用了DefaultServeMux的HandleFunc

    2 调用了DefaultServeMux的Handle

    3 往DefaultServeMux的map[string]muxEntry中增加对应的handler和路由规则

  • 其次调用http.ListenAndServe(":9090", nil) - nil使用默认路由器

    按顺序做了几件事情:

    1 实例化Server

    2 调用Server的ListenAndServe()

    3 调用net.Listen("tcp", addr)监听端口

    4 启动一个for循环,在循环体中Accept请求

    5 对每个请求实例化一个Conn,并且开启一个goroutine为这个请求进行服务go c.serve()

    6 读取每个请求的内容w, err := c.readRequest()

    7 判断handler是否为空,如果没有设置handler(这个例子就没有设置handler),handler就设置为DefaultServeMux

    8 调用handler的ServeHttp

    9 在这个例子中,下面就进入到DefaultServeMux.ServeHttp

    10 根据request选择handler,并且进入到这个handler的ServeHTTP

    mux.handler(r).ServeHTTP(w, r)

    11 选择handler:

    A 判断是否有路由能满足这个request(循环遍历ServeMux的muxEntry)

    B 如果有路由满足,调用这个路由handler的ServeHTTP

    C 如果没有路由满足,调用NotFoundHandler的ServeHTTP


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法统治世界——智能经济的隐形秩序

算法统治世界——智能经济的隐形秩序

徐恪、李沁 / 清华大学出版社有限公司 / 2017-11-15 / CNY 69.00

今天,互联网已经彻底改变了经济系统的运行方式,经济增长的决定性要素已经从物质资料的增加转变成为信息的增长。但是,只有信息的快速增长是不够的,这些增长的信息还必须是“有序”的。只有“有序”才能使信息具有价值,能够为人所用,能够指导我们实现商业的新路径。这种包含在信息里的隐形秩序才是今天信息世界的真正价值所在。经济系统的运行确实是纷繁复杂的,但因为算法的存在,这一切变得有律可循,算法也成为新经济系统里......一起来看看 《算法统治世界——智能经济的隐形秩序》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具