2018年最强自然语言模型 Google BERT 资源汇总

栏目: 编程工具 · 发布时间: 5年前

内容简介:本文介绍了一种新的语言表征模型 BERT——来自 Transformer 的双向编码器表征。与最近的语言表征模型不同,BERT 旨在基于所有层的左、右语境来预训练深度双向表征。BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录。其中的主要模块 Transformer 来自遮蔽语言模型(完形填空)和预测下一句任务。

本文介绍了一种新的语言表征模型 BERT——来自 Transformer 的双向编码器表征。与最近的语言表征模型不同,BERT 旨在基于所有层的左、右语境来预训练深度双向表征。BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录。

BERT 论文内容精要

模型结构

其中的主要模块 Transformer 来自 Attention Is All You Need

2018年最强自然语言模型 Google BERT 资源汇总

模型输入

2018年最强自然语言模型 Google BERT 资源汇总

预训练方法

遮蔽语言模型(完形填空)和预测下一句任务。

实验

2018年最强自然语言模型 Google BERT 资源汇总
2018年最强自然语言模型 Google BERT 资源汇总
2018年最强自然语言模型 Google BERT 资源汇总

模型分析

Effect of Pre-training Tasks

2018年最强自然语言模型 Google BERT 资源汇总

Effect of Model Size

2018年最强自然语言模型 Google BERT 资源汇总

Effect of Number of Training Steps

2018年最强自然语言模型 Google BERT 资源汇总

Feature-based Approach with BERT

2018年最强自然语言模型 Google BERT 资源汇总

结论

Recent empirical improvements due to transfer learning with language models have demonstrated that rich, unsupervised pre-training is an integral part of many language understanding systems. Inparticular, these results enable even low-resource tasks to benefit from very deep unidirectional architectures.Our major contribution is further generalizing these findings to deep bidirectional architectures, allowing the same pre-trained model to successfully tackle a broad set of NLP tasks. While the empirical results are strong, in some cases surpassing human performance, important future work is to investigate the linguistic phenomena that may or may not be captured by BERT.

BERT 相关资源

标题 说明 附加
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 原始论文 20181011
Reddit 讨论 作者讨论
BERT-pytorch Google AI 2018 BERT pytorch implementation
论文解读:BERT模型及fine-tuning 习翔宇 论文解读
最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录 论文浅析
【NLP】Google BERT详解 李入魔 解读
如何评价 BERT 模型? 解读论文思想点
NLP突破性成果 BERT 模型详细解读 章鱼小丸子 解读
谷歌最强 NLP 模型 BERT 解读 AI科技评论
预训练BERT,官方代码发布前他们是这样用TensorFlow解决的 论文复现说明 20181030
谷歌终于开源BERT代码:3 亿参数量,机器之心全面解读 20181101

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova (Submitted on 11 Oct 2018)

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%. Comments: 13 pages

摘要:本文介绍了一种新的语言表征模型 BERT,意为来自 Transformer 的双向编码器表征(Bidirectional Encoder Representations from Transformers)。与最近的语言表征模型(Peters et al., 2018; Radford et al., 2018)不同,BERT 旨在基于所有层的左、右语境来预训练深度双向表征。因此,预训练的 BERT 表征可以仅用一个额外的输出层进行微调,进而为很多任务(如问答和语言推断任务)创建当前最优模型,无需对任务特定架构做出大量修改。

BERT 的概念很简单,但实验效果很强大。它刷新了 11 个 NLP 任务的当前最优结果,包括将 GLUE 基准提升至 80.4%(7.6% 的绝对改进)、将 MultiNLI 的准确率提高到 86.7%(5.6% 的绝对改进),以及将 SQuAD v1.1 的问答测试 F1 得分提高至 93.2 分(提高 1.5 分)——比人类表现还高出 2 分。

Subjects: Computation and Language (cs.CL) Cite as: arXiv:1810.04805 [cs.CL] (or arXiv:1810.04805v1 [cs.CL] for this version) Bibliographic data Select data provider: Semantic Scholar [Disable Bibex(What is Bibex?)] No data available yet Submission history From: Jacob Devlin [view email] [v1] Thu, 11 Oct 2018 00:50:01 GMT (227kb,D)

Reddit 讨论

2018年最强自然语言模型 Google BERT 资源汇总
2018年最强自然语言模型 Google BERT 资源汇总
2018年最强自然语言模型 Google BERT 资源汇总

最近谷歌发布了基于双向 Transformer 的大规模预训练语言模型,该预训练模型能高效抽取文本信息并应用于各种 NLP 任务,该研究凭借预训练模型刷新了 11 项 NLP 任务的当前最优性能记录。如果这种预训练方式能经得起实践的检验,那么各种 NLP 任务只需要少量数据进行微调就能实现非常好的效果,BERT 也将成为一种名副其实的骨干网络。

Introduction

BERT, or B idirectional E ncoder R epresentations from T ransformers, is a new method of pre-training language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks.

Our academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: arxiv.org/abs/1810.04… .

To give a few numbers, here are the results on theSQuAD v1.1 question answering task:

SQuAD v1.1 Leaderboard (Oct 8th 2018) Test EM Test F1
1st Place Ensemble - BERT 87.4 93.2
2nd Place Ensemble - nlnet 86.0 91.7
1st Place Single Model - BERT 85.1 91.8
2nd Place Single Model - nlnet 83.5 90.1

And several natural language inference tasks:

System MultiNLI Question NLI SWAG
BERT 86.7 91.1 86.3
OpenAI GPT (Prev. SOTA) 82.2 88.1 75.0

Plus many other tasks.

Moreover, these results were all obtained with almost no task-specific neural network architecture design.

If you already know what BERT is and you just want to get started, you candownload the pre-trained modelsandrun a state-of-the-art fine-tuningin only a few minutes.

Pre-training of Deep Bidirectional Transformers for Language Understanding

复现 BERT-keras

Keras implementation of BERT(Bidirectional Encoder Representations from Transformers)
PyTorch version of Google AI's BERT model with script to load Google's pre-trained models.

BERT的数据集 GLUE

GLUE 来自论文 GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

摘要

For natural language understanding (NLU) technology to be maximally useful, both practically and as a scientific object of study, it must be general: it must be able to process language in a way that is not exclusively tailored to any one specific task or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation benchmark (GLUE), a tool for evaluating and analyzing the performance of models across a diverse range of existing NLU tasks. GLUE is model-agnostic, but it incentivizes sharing knowledge across tasks because certain tasks have very limited training data. We further provide a hand-crafted diagnostic test suite that enables detailed linguistic analysis of NLU models. We evaluate baselines based on current methods for multi-task and transfer learning and find that they do not immediately give substantial improvements over the aggregate performance of training a separate model per task, indicating room for improvement in developing general and robust NLU systems.

以上所述就是小编给大家介绍的《2018年最强自然语言模型 Google BERT 资源汇总》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

C陷阱与缺陷

C陷阱与缺陷

凯尼格 / 高巍 / 人民邮电出版社 / 2008-2-1 / 30.00元

作者以自己1985年在Bell实验室时发表的一篇论文为基础,结合自己的工作经验扩展成为这本对C程序员具有珍贵价值的经典著作。写作本书的出发点不是要批判C语言,而是要帮助C程序员绕过编程过程中的陷阱和障碍。.. 全书分为8章,分别从词法分析、语法语义、连接、库函数、预处理器、可移植性缺陷等几个方面分析了C编程中可能遇到的问题。最后,作者用一章的篇幅给出了若干具有实用价值的建议。.. 本书......一起来看看 《C陷阱与缺陷》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

MD5 加密
MD5 加密

MD5 加密工具

html转js在线工具
html转js在线工具

html转js在线工具