递归神经网络(RNN)随记

栏目: 数据库 · 发布时间: 7年前

阅读 5

递归神经网络(RNN)随记

基本概念

递归神经网络(RNN)随记
想法:在之后的输入要把之前的信息利用起来。W3就相当于对中间信息进行一个保留。
递归神经网络(RNN)随记
X和U组合成一个特征图,A表示一个记忆单元。
递归神经网络(RNN)随记
V矩阵相当于对St进行一个全连接的操作。最终的输出需要通过softmax将向量转化成概率的形式。RNN最适合做自然语言处理。图像处理上没有要求前后关联。
递归神经网络(RNN)随记
求梯度,每一步都会对前面所有的都进行更新。

递归神经网络的问题

递归神经网络(RNN)随记
RNN的问题:如果输入的句子非常长例如:200个字,那他会把所有的字记忆下来。那么离的比较远的,它的信息价值是不是没那么高!会不会造成一些影响。过长的情况下也会有梯度消失的问题。如果某一步的梯度约等于0,那么前面与它相连的都会约等于0。

LSTM(长短神经网络)

递归神经网络(RNN)随记
递归神经网络(RNN)随记
递归神经网络(RNN)随记
递归神经网络(RNN)随记
递归神经网络(RNN)随记
Ct是指细胞状态,我们需要永远更新下去。当前门是遗忘门,决定哪些信息是需要遗忘的。
递归神经网络(RNN)随记
当前门是计算要保留的信息。
递归神经网络(RNN)随记
Ct是不断迭代不断更新的。
递归神经网络(RNN)随记
递归神经网络(RNN)随记
完整结构。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python编程实战

Python编程实战

[美] Mark Summerfield / 爱飞翔 / 机械工业出版社 / 2014-8 / 69.00元

《python编程实战:运用设计模式、并发和程序库创建高质量程序》由python开发者社区知名技术专家mark summerfield亲笔撰写,全球资深python专家doug hellmann作序鼎力推荐,是python领域最有影响力的著作之一。书中通过大量实用的范例代码和三个完整的案例研究,全面而系统地讲解了如何运用设计模式来规划代码结构,如何通过并发与cython等技术提升代码执行速度,以及......一起来看看 《Python编程实战》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试