内容简介:据 VentureBeat 报道,Google 人工智能研究部门在语音识别方面取得了新的进展,能从嘈杂的环境中分辨声音,准确率高达 92%。Google 人工智能研究部门在一篇名为《Fully Super vised Speaker Diarization》的论文中...
据 VentureBeat 报道,Google 人工智能研究部门在语音识别方面取得了新的进展,能从嘈杂的环境中分辨声音,准确率高达 92%。Google 人工智能研究部门在一篇名为《Fully Super vised Speaker Diarization》的论文中描述了这一新的 AI 系统,称它“能以一种更有效的方式识别声音”。
这套强大的 AI 系统涉及到 Speaker diarization 任务,需要标注出“谁”从“什么时候”到“什么时候”在说话,将语音样本分割成独特的、同构片段的过程。还能将新的演讲者发音与它以前从未遇到过的语音片段关联起来。
其核心算法已经开源可用。它实现了一个在线二值化错误率(DER),在NIST SRE 2000 CALLHOME基准上是7.6%,这对于实时应用来说已经足够低了,而谷歌之前使用的方法DER为8.8%。
谷歌研究人员的新方法是通过递归神经网络(RNN)模拟演讲者的嵌入(如词汇和短语的数学表示),递归神经网络是一种机器学习模型,它可以利用内部状态来处理输入序列。每个演讲者都从自己的RNN实例开始,该实例不断更新给定新嵌入的RNN状态,使系统能够学习发言者共享的高级知识。
研究人员在论文中写道:“由于该系统的所有组件都可以在监督环境下学习,所以在有高质量时间标记演讲者标签训练数据的情况下,它比无监督系统更受青睐。我们的系统受到全面监督,能够从带有时间戳的演讲者标签例子中学习。”
在未来的工作中,研究团队计划改进模型,使其能够集成上下文信息来执行脱机解码,他们希望这将进一步减少DER。研究人员还希望能够直接对声学特征进行建模,这样整个Speaker diarization系统就可以进行端到端训练。
来自:网易科技
【声明】文章转载自:开源中国社区 [http://www.oschina.net]
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 谷歌开源语音识别AI技术,可以从人群中区分每个人的发言
- 提高模型准确率:组合模型
- 微博爬虫与水军识别(基于文本分析),超高准确率
- 谷歌设备内置文本分类 AI准确率更精准
- 学会这招,你也可以让商品定价准确率提升 50%
- 亚马逊新系统 Alexa的话题识别准确率提升
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Head First HTML and CSS
Elisabeth Robson、Eric Freeman / O'Reilly Media / 2012-9-8 / USD 39.99
Tired of reading HTML books that only make sense after you're an expert? Then it's about time you picked up Head First HTML and really learned HTML. You want to learn HTML so you can finally create th......一起来看看 《Head First HTML and CSS》 这本书的介绍吧!