谷歌开源 AI 可在嘈杂环境中区分声音,准确率达92%

栏目: IT资讯 · 发布时间: 7年前

内容简介:据 VentureBeat 报道,Google 人工智能研究部门在语音识别方面取得了新的进展,能从嘈杂的环境中分辨声音,准确率高达 92%。Google 人工智能研究部门在一篇名为《Fully Super vised Speaker Diarization》的论文中...

据 VentureBeat 报道,Google 人工智能研究部门在语音识别方面取得了新的进展,能从嘈杂的环境中分辨声音,准确率高达 92%。Google 人工智能研究部门在一篇名为《Fully Super vised Speaker Diarization》的论文中描述了这一新的 AI 系统,称它“能以一种更有效的方式识别声音”。

这套强大的 AI 系统涉及到 Speaker diarization 任务,需要标注出“谁”从“什么时候”到“什么时候”在说话,将语音样本分割成独特的、同构片段的过程。还能将新的演讲者发音与它以前从未遇到过的语音片段关联起来。

谷歌开源 AI 可在嘈杂环境中区分声音,准确率达92%

核心算法已经开源可用。它实现了一个在线二值化错误率(DER),在NIST SRE 2000 CALLHOME基准上是7.6%,这对于实时应用来说已经足够低了,而谷歌之前使用的方法DER为8.8%。

谷歌研究人员的新方法是通过递归神经网络(RNN)模拟演讲者的嵌入(如词汇和短语的数学表示),递归神经网络是一种机器学习模型,它可以利用内部状态来处理输入序列。每个演讲者都从自己的RNN实例开始,该实例不断更新给定新嵌入的RNN状态,使系统能够学习发言者共享的高级知识。

谷歌开源 AI 可在嘈杂环境中区分声音,准确率达92%

研究人员在论文中写道:“由于该系统的所有组件都可以在监督环境下学习,所以在有高质量时间标记演讲者标签训练数据的情况下,它比无监督系统更受青睐。我们的系统受到全面监督,能够从带有时间戳的演讲者标签例子中学习。”

在未来的工作中,研究团队计划改进模型,使其能够集成上下文信息来执行脱机解码,他们希望这将进一步减少DER。研究人员还希望能够直接对声学特征进行建模,这样整个Speaker diarization系统就可以进行端到端训练。

来自:网易科技


【声明】文章转载自:开源中国社区 [http://www.oschina.net]


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

PWA实战

PWA实战

[美]Dean Alan Hume / 郑丰彧 / 电子工业出版社 / 2018-6 / 69

Progressive Web App(PWA)是由谷歌提出的一整套技术解决方案,它致力于为 Web 提供出色的用户体验,并完美体现了渐进增强原则。作为为数不多的实战入门用书,《PWA 实战:面向下一代的Progressive Web App》旨在通过大量清晰示例来介绍 PWA 的主要特性。全书一共由五个部分组成:第一部分介绍 PWA 的概念及解锁 PWA 应用的关键—Service Worker......一起来看看 《PWA实战》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具