Android 内存缓存框架 LruCache 的源码分析

栏目: 数据库 · 发布时间: 7年前

内容简介:LruCache 是 Android 提供的一种基于内存的缓存框架。LRU 是首先,让我们来简单介绍一下如何使用 LruCache 实现内存缓存。下面是 LruCache 的一个使用示例。这里我们实现的是对 RecyclerView 的列表的截图的功能。因为我们需要将列表的每个项的 Bitmap 存储下来,然后当所有的列表项的 Bitmap 都拿到的时候,将其按照顺序和位置绘制到一个完整的 Bitmap 上面。如果我们不使用 LruCache 的话,当然也能够是实现这个功能——将所有的列表项的 Bitma

LruCache 是 Android 提供的一种基于内存的缓存框架。LRU 是 Least Recently Used 的缩写,即最近最少使用。当一块内存最近很少使用的时候就会被从缓存中移除。在这篇文章中,我们会先简单介绍 LruCache 的使用,然后我们会对它的源码进行分析。

1、基本的使用示例

首先,让我们来简单介绍一下如何使用 LruCache 实现内存缓存。下面是 LruCache 的一个使用示例。

这里我们实现的是对 RecyclerView 的列表的截图的功能。因为我们需要将列表的每个项的 Bitmap 存储下来,然后当所有的列表项的 Bitmap 都拿到的时候,将其按照顺序和位置绘制到一个完整的 Bitmap 上面。如果我们不使用 LruCache 的话,当然也能够是实现这个功能——将所有的列表项的 Bitmap 放置到一个 List 中即可。但是那种方式存在缺点:因为是强引用类型,所以当内存不足的时候会导致 OOM。

在下面的方法中,我们先获取了内存的大小的 8 分之一作为缓存空间的大小,用来初始化 LruCache 对象,然后从 RecyclerView 的适配器中取出所有的 ViewHolder 并获取其对应的 Bitmap,然后按照键值对的方式将其放置到 LruCache 中。当所有的列表项的 Bitmap 都拿到之后,我们再创建最终的 Bitmap 并将之前的 Bitmap 依次绘制到最终的 Bitmap 上面:

public static Bitmap shotRecyclerView(RecyclerView view) {
    RecyclerView.Adapter adapter = view.getAdapter();
    Bitmap bigBitmap = null;
    if (adapter != null) {
        int size = adapter.getItemCount();
        int height = 0;
        Paint paint = new Paint();
        int iHeight = 0;
        final int maxMemory = (int) (Runtime.getRuntime().maxMemory() / 1024);

        // 使用内存的 8 分之一作为该缓存框架的缓存空间
        final int cacheSize = maxMemory / 8;
        LruCache<String, Bitmap> bitmaCache = new LruCache<>(cacheSize);
        for (int i = 0; i < size; i++) {
            RecyclerView.ViewHolder holder = adapter.createViewHolder(view, adapter.getItemViewType(i));
            adapter.onBindViewHolder(holder, i);
            holder.itemView.measure(
                    View.MeasureSpec.makeMeasureSpec(view.getWidth(), View.MeasureSpec.EXACTLY),
                    View.MeasureSpec.makeMeasureSpec(0, View.MeasureSpec.UNSPECIFIED));
            holder.itemView.layout(0, 0, holder.itemView.getMeasuredWidth(),
                    holder.itemView.getMeasuredHeight());
            holder.itemView.setDrawingCacheEnabled(true);
            holder.itemView.buildDrawingCache();
            Bitmap drawingCache = holder.itemView.getDrawingCache();
            if (drawingCache != null) {
                bitmaCache.put(String.valueOf(i), drawingCache);
            }
            height += holder.itemView.getMeasuredHeight();
        }

        bigBitmap = Bitmap.createBitmap(view.getMeasuredWidth(), height, Bitmap.Config.ARGB_8888);
        Canvas bigCanvas = new Canvas(bigBitmap);
        Drawable lBackground = view.getBackground();
        if (lBackground instanceof ColorDrawable) {
            ColorDrawable lColorDrawable = (ColorDrawable) lBackground;
            int lColor = lColorDrawable.getColor();
            bigCanvas.drawColor(lColor);
        }

        for (int i = 0; i < size; i++) {
            Bitmap bitmap = bitmaCache.get(String.valueOf(i));
            bigCanvas.drawBitmap(bitmap, 0f, iHeight, paint);
            iHeight += bitmap.getHeight();
            bitmap.recycle();
        }
    }

    return bigBitmap;
}
复制代码

因此,我们可以总结出 LruCahce 的基本用法如下:

首先,你要声明一个缓存空间的大小,在这里我们用了运行时内存的 8 分之 1 作为缓存空间的大小

LruCache<String, Bitmap> bitmaCache = new LruCache<>(cacheSize);
复制代码

但是应该注意的一个问题是缓存空间的单位的问题。因为 LruCache 的键值对的值可能是任何类型的,所以你传入的类型的大小如何统计需要自己去指定。后面我们在分析它的源码的时候会指出它的单位的问题。LruCahce 的 API 中也已经提供了计算传入的值的大小的方法。我们只需要在实例化一个 LruCache 的时候覆写该方法即可。而这里我们认为一个 Bitmap 对象所占用的内存的大小不超过 1KB.

然后,我们可以像普通的 Map 一样调用它的 put() 和 get() 方法向缓存中插入和从缓存中取出数据:

bitmaCache.put(String.valueOf(i), drawingCache);
Bitmap bitmap = bitmaCache.get(String.valueOf(i));
复制代码

2、LruCahce 源码分析

2.1 分析之前:当我们自己实现一个 LruCache 的时候,我们需要考虑什么

在我们对 LruCache 的源码进行分析之前,我们现来考虑一下当我们自己去实现一个 LruCache 的时候需要考虑哪些东西,以此来带着问题阅读源码。

因为我们需要对数据进行存储,并且又能够根据指定的 id 将数据从缓存中取出,所以我们需要使用哈希表表结构。或者使用两个数组,一个作为键一个作为值,然后使用它们的索引来实现映射也行。但是,后者的效率不如前者高。

此外,我们还要对插入的元素进行排序,因为我们需要移除那些使用频率最小的元素。我们可以使用链表来达到这个目的,每当一个数据被用到的时候,我们可以将其移向链表的头节点。这样当要插入的元素大于缓存的最大空间的时候,我们就将链表末位的元素移除,以在缓存中腾出空间。

综合这两点,我们需要一个既有哈希表功能,又有队列功能的数据结构。在 Java 的集合中,已经为我们提供了 LinkedHashMap 用来实现这个功能。

实际上在 Android 中的 LruCache 也正是使用 LinkedHashMap 来实现的。LinkedHashMap 拓展自HashMap。如果理解 HashMap 的话,它的源码就不难阅读。LinkedHashMap 仅在 HashMap 的基础之上,又将各个节点放进了一个双向链表中。每次增加和删除一个元素的时候,被操作的元素会被移到到链表的末尾。Android 中的 LruCahce 就是在 LinkedHashMap 基础之上进行了一层拓展,不过 Android 中的 LruCache 的实现具有一些很巧妙的地方值得我们学习。

2.2 LruCache 源代码分析

从上面的分析中我们知道了选择 LinkedHashMap 作为底层数据结构的原因。下面我们分析其中的一些方法。这个类的实现还有许多的细节考虑得非常周到,非常值得我们借鉴和学习。

2.2.1 缓存的最大可用空间

在 LruCache 中有两个字段 size 和 maxSize. maxSize 会在 LruCache 的构造方法中被赋值,用来表示该缓存的最大可用的空间:

int cacheSize = 4 * 1024 * 1024; // 4MiB,cacheSize 的单位是 KB
LruCache<String, Bitmap> bitmapCache = new LruCache<String, Bitmap>(cacheSize) {
    protected int sizeOf(String key, Bitmap value) {
        return value.getByteCount();
    }
}};
复制代码

这里我们使用 4MB 来设置缓存空间的大小。我们知道 LruCache 的原理是指定了空间的大小之后,如果继续插入元素时,空间超出了指定的大小就会将那些“可以被移除”的元素移除掉,以此来为新的元素腾出空间。那么,因为插入的类型时不确定的,所以具体被插入的对象如何计算大小就应该交给用户来实现。

在上面的代码中,我们直接使用了 Bitmap 的 getByteCount() 方法来获取 Bitmap 的大小。同时,我们也注意到在最初的例子中,我们并没有这样去操作。那样的话一个 Bitmap 将会被当作 1KB 来计算。

这里的 sizeOf() 是一个受保护的方法,显然是希望用户自己去实现计算的逻辑。它的默认值是 1,单位和设置缓存大小指定的 maxSize 的单位相同:

protected int sizeOf(K key, V value) {
    return 1;
}
复制代码

这里我们还需要提及一下:虽然这个方法交给用户来实现,但是在 LruCache 的源码中,不会直接调用这个方法,而是

private int safeSizeOf(K key, V value) {
    int result = sizeOf(key, value);
    if (result < 0) {
        throw new IllegalStateException("Negative size: " + key + "=" + value);
    }
    return result;
}
复制代码

所以,这里又增加了一个检查,防止参数错误。其实,这个考虑是非常周到的,试想如果传入了一个非法的参数,导致了意外的错误,那么错误的地方就很难跟踪了。如果我们自己想设计 API 给别人用并且提供给他们自己可以覆写的方法的时候,不妨借鉴一下这个设计。

2.2.2 LruCache 的 get() 方法

下面我们分析它的 get() 方法。它用来从 LruCahce 中根据指定的键来获取对应的值:

/**
 * 1). 获取指定 key 对应的元素,如果不存在的话就用 craete() 方法创建一个。
 * 2). 当返回一个元素的时候,该元素将被移动到队列的首位;
 * 3). 如果在缓存中不存在又不能创建,就返回n ull
 */
public final V get(K key) {
    if (key == null) {
        throw new NullPointerException("key == null");
    }

    V mapValue;
    synchronized (this) {
        // 在这里如果返回不为空的话就会将返回的元素移动到队列头部,这是在 LinkedHashMap 中实现的
        mapValue = map.get(key);
        if (mapValue != null) {
            // 缓存命中
            hitCount++;
            return mapValue;
        }
        // 缓存没有命中,可能是因为这个键值对被移除了
        missCount++;
    }

    // 这里的创建是单线程的,在创建的时候指定的 key 可能已经被其他的键值对占用
    V createdValue = create(key);
    if (createdValue == null) {
        return null;
    }

    // 这里设计的目的是防止创建的时候,指定的 key 已经被其他的 value 占用,如果冲突就撤销插入
    synchronized (this) {
        createCount++;
        // 向表中插入一个新的数据的时候会返回该 key 之前对应的值,如果没有的话就返回 null
        mapValue = map.put(key, createdValue);
        if (mapValue != null) {
            // 冲突了,还要撤销之前的插入操作
            map.put(key, mapValue);
        } else {
            size += safeSizeOf(key, createdValue);
        }
    }

    if (mapValue != null) {
        entryRemoved(false, key, createdValue, mapValue);
        return mapValue;
    } else {
        trimToSize(maxSize);
        return createdValue;
    }
}
复制代码

这里获取值的时候对当前的实例进行了加锁以保证线程安全。当用 map 的 get() 方法获取不到数据的时候用了 create() 方法。因为当指定的键值对找不到的时候,可能它本来就不存在,可能是因为缓存不足被移除了,所以,我们需要提供这个方法让用户来处理这种情况,该方法默认返回 null. 如果用户覆写了 create() 方法,并且返回的值不为 null,那么我们需要将该值插入到哈希表中。

插入的逻辑也在同步代码块中进行。这是因为,创建的操作可能过长而且是非同步的。当我们再次向指定的 key 插入值的时候,它可能已经存在值了。所以当调用 map 的 put() 的时候如果返回不为 null,就表明对应的 key 已经有对应的值了,就需要撤销插入操作。最后,当 mapValue 非 null,还要调用 entryRemoved() 方法。每当一个键值对从哈希表中被移除的时候,这个方法将会被回调一次。

最后调用了 trimToSize() 方法,用来保证新的值被插入之后缓存的空间大小不会超过我们指定的值。当发现已经使用的缓存超出最大的缓存大小的时候,“最近最少使用” 的项目将会被从哈希表中移除。

那么如何来判断哪个是 “最近最少使用” 的项目呢?我们先来看下 trimToSize() 的方法定义:

public void trimToSize(int maxSize) {
    while (true) {
        K key;
        V value;
        synchronized (this) {
            if (size < 0 || (map.isEmpty() && size != 0)) {
                throw new IllegalStateException(getClass().getName()
                        + ".sizeOf() is reporting inconsistent results!");
            }

            if (size <= maxSize) {
                break;
            }

            // 获取用来移除的 “最近最少使用” 的项目
            Map.Entry<K, V> toEvict = map.eldest();
            if (toEvict == null) {
                break;
            }

            key = toEvict.getKey();
            value = toEvict.getValue();
            map.remove(key);
            size -= safeSizeOf(key, value);
            evictionCount++;
        }

        entryRemoved(true, key, value, null);
    }
}
复制代码

显然,这里是使用了 LinkedHashMap 的 eldest() 方法,这个方法的返回值是:

public Map.Entry<K, V> eldest() {
    return head;
}
复制代码

也就是 LinkedHashMap 的头结点。那么为什么要移除头结点呢?这不符合 LRU 的原则啊,这里分明是直接移除了头结点。实际上不是这样,魔力发生在 get() 方法中。在 LruCache 的 get() 方法中,我们调用了 LinkedHashMap 的 get() 方法,这个方法中又会在拿到值的时候调用下面的方法:

void afterNodeAccess(Node<K,V> e) { // move node to last
    LinkedHashMapEntry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMapEntry<K,V> p =
            (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}
复制代码

这里的逻辑是把 get() 方法中返回的结点移动到双向链表的末尾。所以,最近最少使用的结点必然就是头结点了。

3、总结

以上是我们对 LruCache 的是使用和源码的总结,这里我们实际上只分析了 get() 的过程。因为这个方法才是 LruCache 的核心,它包含了插入值和移动最近使用的项目的过程。至于 put()remove() 两种方法,它们内部实际上直接调用了 LinkedHashMap 的方法。这里我们不再对它们进行分析。 不过当使用这个框架的时候,还是要提醒下注意缓存的对象的单位问题!

如果您喜欢我的文章,可以在以下平台关注我:

更多文章: Gihub: Android-notes


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Haskell School of Music

The Haskell School of Music

Paul Hudak、Donya Quick / Cambridge University Press / 2018-10-4 / GBP 42.99

This book teaches functional programming through creative applications in music and sound synthesis. Readers will learn the Haskell programming language and explore numerous ways to create music and d......一起来看看 《The Haskell School of Music》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具