内容简介:微软发布了 ML.NET 0.7,此版本侧重于为基于推荐的机器学习任务提供更好的支持,主要实现了异常检测、增强了机器学习 pipeline 的可定制性,并且支持在 x86 应用程序中使用等。ML.NET 是一个跨平台的机器学习框架,旨在让 .NET 开发者更快上手机器学习,它允许 .NET 开发者开发他们自己的模型,并将自定义 ML 注入到应用程序中。0.7 主要更新内容:
微软发布了 ML.NET 0.7,此版本侧重于为基于推荐的机器学习任务提供更好的支持,主要实现了异常检测、增强了机器学习 pipeline 的可定制性,并且支持在 x86 应用程序中使用等。
ML.NET 是一个跨平台的机器学习框架,旨在让 .NET 开发者更快上手机器学习,它允许 .NET 开发者开发他们自己的模型,并将自定义 ML 注入到应用程序中。
0.7 主要更新内容:
使用 Matrix Factorization 增强对推荐任务的支持
推荐系统可以为目录、歌曲、电影等中的产品生成推荐列表,通过添加矩阵分解(Matrix Factorization,MF)改进了对在 ML.NET 中创建推荐系统的支持。MF 通常情况下比 ML.NET 0.3 中引入的 Field-Aware Factorization Machines 明显更快,并且它可以支持连续数字等级(例如 1-5 星)而不是布尔值的等级(“喜欢”或“不喜欢”)。
启用异常检测方案
异常检测用于欺诈检测(识别可疑信用卡交易)和服务器监控(识别异常活动)等场景。
ML.NET 0.7 支持检测两种类型的异常行为:
-
Spike detection:监测由于中断、网络攻击、病毒式网络内容等异常引起的突发且临时性的输入数据值。
-
Change point detection:监测某一数据行为产生持久偏差的最初节点,例如,如果产品销售在某一段时间变得更受欢迎(每月销售额增加一倍),那么这个趋势发生变化时会在最开始有一个转折点。
改进了 ML.NET pipeline 的可定制性
ML.NET 提供各种数据转换(例如处理文本、图像、分类特征等)。但是,某些用例需要特定于应用程序的转换,例如计算两个文本列之间的余弦相似度。0.7 中添加了对自定义转换的支持,可以轻松地包含自定义业务逻辑。
CustomMappingEstimator 用于编写自己的方法以处理数据并将它们带入 ML.NET pipeline:
var estimator = mlContext.Transforms.CustomMapping<MyInput, MyOutput>(MyLambda.MyAction, "MyLambda")
.Append(...)
.Append(...)
以下是此自定义映射将执行操作的定义。在此示例中,将文本标签(“spam”或“ham”)转换为布尔标签(true 或 false):
public class MyInput
{
public string Label { get; set; }
}
public class MyOutput
{
public bool Label { get; set; }
}
public class MyLambda
{
[Export("MyLambda")]
public ITransformer MyTransformer => ML.Transforms.CustomMappingTransformer<MyInput, MyOutput>(MyAction, "MyLambda");
[Import]
public MLContext ML { get; set; }
public static void MyAction(MyInput input, MyOutput output)
{
output.Label= input.Label == "spam" ? true : false;
}
}
支持 x86
ML.NET 此前仅限于 x64 设备,0.7 将其引入了 x86 32 位设备,不过需要注意,某些基于外部依赖项的组件(例如 TensorFlow)在 x86 中将不可用。
详情见 发布公告 。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 开源 | Hippy:腾讯开源的跨端开发框架
- WeGeek | WePY 开源框架
- 开源 | vnpy:基于 Python 的开源量化交易平台开发框架
- 优秀开源框架的扩展机制实现
- 开源Botnet框架Byob分析
- 滴滴开源小程序框架 Mpx
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Web Data Mining
Bing Liu / Springer / 2011-6-26 / CAD 61.50
Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an ......一起来看看 《Web Data Mining》 这本书的介绍吧!