论文笔记:Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

栏目: 数据库 · 发布时间: 7年前

作者

  • Junyoung Chung
  • Caglar Gulcehre
  • KyungHyun Cho
  • Yoshua Bengio

观点

  • RNN 在很多机器学习任务尤其是变长输入输出的任务上效果拔群
  • 经典 RNN 有两个主要的问题: 梯度消失, 长期记忆急速衰减。
  • 解决 RNN 难以训练的尝试有两种: 一种是设计更好的学习方法(Bengio 2013),另外一种是设计更复杂的激活函数
  • LSTM 不会每次都重写 memory,而是可以通过 input/forget gate 在需要的时候尽量地保留原来的 memory
  • LSTM/GRU 中额外增加的 cell state,让它们能记住较早之前的某些特定输入,同时让误差反向传播时不会衰减地太快

数据集

模型/实验/结论

实验: 在上述几个数据集上,分别使用经典 RNN、LSTM、GRU 进行训练,并记录 NLL 的变化情况。

结论: LSTM/GRU 在收敛速度和最后的结果上,都要比经典 RNN 要好,但 LSTM 和 GRU 在不同的数据集和任务上虽然互有优劣但差异不大,具体使用 LSTM 还是 GRU 还要视情况而定。

概念和术语

  • polyphonic music:

    (来自维基百科)

    复音音乐/复调音乐/和弦,一种“多声部音乐”。作品中含有两条以上(含)独立旋律,通过技术性处理,和谐地结合在一起,这样的音乐就叫做复音音乐。

    复音音乐第一个“音”字表示旋律,中国音乐界习惯将“复音音乐”称为“复调音乐”,主要是着眼于曲调一词,但“复调音乐”容易与二十世纪的“复调性音乐”一词混淆。

总结

实验很粗暴,结论很简单。


以上所述就是小编给大家介绍的《论文笔记:Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

长尾理论2.0

长尾理论2.0

安德森 / 乔江涛、石晓燕 / 中信出版社 / 2009-5 / 42.00元

《长尾理论2.0》是克里斯·安德森对所有问题最明确的回答。在此书中,他详细阐释了长尾的精华所在,揭示了长尾现象是如何从工业资本主义原动力——规模经济与范围经济——的矛盾中产生出来的。长尾现象虽然是明显的互联网现象,但其商务逻辑本身,却是从工业经济中自然而然“长”出来的,网络只是把酝酿了几十年的供应链革命的诸多要素简单地结合在一起了。同时,长尾理论转化为行动,最有力、最可操作的就是营销长尾,通过口碑......一起来看看 《长尾理论2.0》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具