淘宝搜索推荐论文赏析 05 November 2018

栏目: 数据库 · 发布时间: 5年前

内容简介:最近在arxiv下载了几篇阿里巴巴淘宝发表的,关于商品搜索排序的论文。 这里通过学习论文内容来分析一下淘宝的搜索排序和推荐实践。Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks用户画像的通用表示学习

最近在arxiv下载了几篇阿里巴巴淘宝发表的,关于商品搜索 排序 的论文。 这里通过学习论文内容来分析一下淘宝的搜索排序和推荐实践。

Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks

用户画像的通用表示学习

Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning

淘宝搜索的增强学习

Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application

使用增强学习模型来优化排序策略

定义 search session Markov decision process 来形式化搜索过程。然后使用梯度算法来优化决策过程中的排序策略。

A Brand-level Ranking System with the Customized Attention-GRU Model

Attention-GRU 品牌排序模型。要解决的需求是预测用户对品牌的偏好程度。

LSTM and GRU 是两种RNN模型,都具有避免梯度弥散的性质。两者相比之下,GRU参数较少,训练过程较快。我们在模型中引入了 attention 机制。

Multi-Level Deep Cascade Trees for Conversion Rate Prediction

提出一个瀑布结构的决策树集成学习模型

Deep Interest Network for Click-Through Rate Prediction

构建用户兴趣网络模型来预测商品的点击率


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

反欺骗的艺术

反欺骗的艺术

(美) 米特尼克(Mitnick, K. D.) / 潘爱民 / 清华大学出版社 / 2014-7-1 / 49.80元

凯文•米特尼克(Kevin D. Mitnick)曾经是历史上最令FBI头痛的计算机顽徒之一,现在他已经完成了大量的文章、图书、影片和记录文件。自从2000年从联邦监狱中获释以来,米特尼克改变了他的生活方式,成了全球广受欢迎的计算机安全专家之一。在他的首部将功补过的作品中,这位全世界最著名的黑客为“放下屠刀,立地成佛”这句佛语赋予了新的含义。 在《反欺骗的艺术——世界传奇黑客的经历分享》中,......一起来看看 《反欺骗的艺术》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具