自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

栏目: 编程工具 · 发布时间: 5年前

内容简介:nlp发展的历史非常早,因为人从计算机发明开始,就有对语言处理的需求。各种字符串算法都贯穿于计算机的发展历史中。伟大的乔姆斯基提出了生成文法,人类拥有的处理语言的最基本框架,自动机(正则表达式),随机上下文无关分析树,字符串匹配算法KMP,动态规划。nlp任务里如文本分类,成熟的非常早,如垃圾邮件分类等,用朴素贝叶斯就能有不错的效果。20年前通过纯统计和规则都可以做机器翻译了。相比,在cv领域,那时候mnist分类还没搞好呢。

自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

1. 抢跑的nlp

nlp发展的历史非常早,因为人从计算机发明开始,就有对语言处理的需求。各种字符串算法都贯穿于计算机的发展历史中。伟大的乔姆斯基提出了生成文法,人类拥有的处理语言的最基本框架,自动机(正则表达式),随机上下文无关分析树,字符串匹配算法KMP,动态规划。

nlp任务里如文本分类,成熟的非常早,如垃圾邮件分类等,用朴素贝叶斯就能有不错的效果。20年前通过纯统计和规则都可以做机器翻译了。相比,在cv领域,那时候mnist分类还没搞好呢。

90年代,信息检索的发展提出BM25等一系列文本匹配算法,Google等搜索引擎的发展将nlp推向了高峰。相比CV领域暗淡的一些。

2. 特征抽取困难的cv

cv的前身就有一个领域叫图像处理,研究图片的压缩、滤波、边缘提取,天天摆弄着一个叫lenna的美女。

自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

早期的计算机视觉领域受困于特征提取的困难,无论是HOG还是各种手工特征提取,都没办法取得非常好的效果。

大规模商业化应用比较困难。而同期nlp里手工特征➕svm已经搞的风生水起了。

3. 深度学习的崛起- 自动特征提取

近些年,非常火爆的深度学习模型简单可以概括为:

深度学习 = 特征提取器➕分类器

一下子解决cv难于手工提取特征的难题,所以给cv带来了爆发性的进展。深度学习的思路就是让模型自动从数据中学习特征提取,从而生成了很多人工很难提取的特征:

自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

4. nlp的知识困境

不是说nlp在这波深度学习浪潮下没有进展,而是说突破并没有cv那么巨大。很多文本分类任务,你用一个巨复杂的双向LTSM的效果,不见得比好好做手工feature + svm好多少,而svm速度快、小巧、不需要大量数据、不需要gpu,很多场景真不见得深度学习的模型就比svm、gbdt等传统模型就好用。

而nlp更大的难题在于知识困境。不同于cv的感知智能,nlp是认知智能,认知就必然涉及到知识的问题,而知识却又是最离散最难于表示的。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

从“为什么”开始

从“为什么”开始

[美] 西蒙·斯涅克 / 苏西 / 海天出版社 / 2011-7 / 32.00元

影响人类的行为:要么靠操纵,要么靠感召。 操纵带来的是交易,是短期效益; 感召带来的是信任,是永续经营! 盖茨走后,微软面临怎样的挑战?后盖茨时代,微软为何从一个希望改变世界的公司沦落为一个做软件的公司? 沃尔玛的灵魂人物过世后,一度被人们热爱的公司,遭到的竟然多是顾客、员工的反感?沃尔玛要怎样做才能重放昔日光彩? 星巴克吸引人们购买的不是咖啡,而是理念?为什么说霍华......一起来看看 《从“为什么”开始》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试