HiddenLayer:可视化PyTorch、TensorFlow神经网络图的轻量级工具!

栏目: Python · 发布时间: 5年前

内容简介:GitHub链接:https://github.com/waleedka/hiddenlayerHiddenLayer 非常简单,易于扩展,且与JupyterNotebook 完美兼容。开发该工具的目的不是为了取代TensorBoard 等高级工具,而是用在那些无需使用高级工具的用例中(杀鸡焉用宰牛刀)。HiddenLayer 由 Waleed Abdulla 和 Phil Ferriere 编写,已获得 MIT 许可证。使用 HiddenLayer 在JupyterNotebook 中渲染你的神经网络图

GitHub链接:https://github.com/waleedka/hiddenlayer

HiddenLayer 非常简单,易于扩展,且与JupyterNotebook 完美兼容。开发该 工具 的目的不是为了取代TensorBoard 等高级工具,而是用在那些无需使用高级工具的用例中(杀鸡焉用宰牛刀)。HiddenLayer 由 Waleed Abdulla 和 Phil Ferriere 编写,已获得 MIT 许可证。

1. 可读的图

使用 HiddenLayer 在JupyterNotebook 中渲染你的神经网络图,或者渲染 pdf 或 png 文件。Jupyter notebook 示例请参考以下链接:

  • TensorFlow:https://github.com/waleedka/hiddenlayer/blob/master/demos/tf_graph.ipynb

  • Pytorch:https://github.com/waleedka/hiddenlayer/blob/master/demos/pytorch_graph.ipynb

HiddenLayer:可视化PyTorch、TensorFlow神经网络图的轻量级工具!

这些图用于沟通高级架构。因此,低级细节在默认状态下是隐藏的(如权重初始化 ops、梯度、一般层类型的内部 ops 等)。HiddenLayer 还将常用层序列叠在一起。例如,Convolution -> RELU -> MaxPool 序列比较常用,为简单起见,它们被合并在一个盒子里。

自定义图

隐藏、折叠节点的规则是完全可定制的。你可以用 graph expressions 和 transforms 添加自己的规则。例如,使用以下命令可以将 ResNet101 中 bottleneck 块的所有节点折叠为一个节点。

# Fold bottleneck blocks
    ht.Fold("((ConvBnRelu > ConvBnRelu > ConvBn) | ConvBn) > Add > Relu", 
            "BottleneckBlock", "Bottleneck Block"),

HiddenLayer:可视化PyTorch、TensorFlow神经网络图的轻量级工具!

2.JupyterNotebook 中的训练度量

在JupyterNotebook 中运行训练试验非常有用。你可以绘制损失函数和准确率图、权重直方图,或者可视化一些层的激活函数。

HiddenLayer:可视化PyTorch、TensorFlow神经网络图的轻量级工具!

在JupyterNotebook 之外:

在JupyterNotebook 外同样可以使用 HiddenLayer。在 Python 脚本中运行 HiddenLayer,可以打开度量的单独窗口。如果你使用的服务器没有 GUI,可以将图像截图存储为 png 文件以备后查。该用例示例参见:https://github.com/waleedka/hiddenlayer/blob/master/demos/history_canvas.py。

3. Hackable

HiddenLayer 是一个小型库。它覆盖基础元素,但你可能需要为自己的用例进行扩展。例如,如果你想将模型准确率表示为饼图,就需要扩展 Canbas 类,并添加新方法,如下所示:

class MyCanvas(hl.Canvas):
    """Extending Canvas to add a pie chart method."""
    def draw_pie(self, metric):
        # set square aspect ratio
        self.ax.axis('equal')
        # Get latest value of the metric
        value = np.clip(metric.data[-1], 0, 1)
        # Draw pie chart
        self.ax.pie([value, 1-value], labels=["<mark data-type="technologies" data-id="8be77eae-12da-4e9e-9a88-b7f5bae98c2e">Accuracy</mark>", ""])

示例参见:https://github.com/waleedka/hiddenlayer/blob/master/demos/pytorch_train.ipynb 或 https://github.com/waleedka/hiddenlayer/blob/master/demos/tf_train.ipynb。

HiddenLayer:可视化PyTorch、TensorFlow神经网络图的轻量级工具!

Demo

PyTorch:

  • pytorch_graph.ipynb:此 notebook 展示了如何为一些流行的 PyTorch 模型生成图。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/pytorch_graph.ipynb

  • pytorch_train.ipynb:展示了如何在 PyTorch 中追踪和可视化训练度量。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/pytorch_train.ipynb

  • history_canvas.py:在没有 GUI 的情况下使用 HiddenLayer 的示例。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/history_canvas.py

TensorFlow:

  • tf_graph.ipynb:此 notebook 介绍了如何为不同的 TF SLIM 模型生成图。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/tf_graph.ipynb

  • tf_train.ipynb:展示了如何在TensorFlow 中追踪和可视化训练度量。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/tf_train.ipynb

  • history_canvas.py:在没有 GUI 的情况下使用 HiddenLayer 的示例。

  • 地址:https://github.com/waleedka/hiddenlayer/blob/master/demos/history_canvas.py

安装

1. 先决条件

a. Python3、Numpy、Matplotlib 和JupyterNotebook。

b. 用TensorFlow 或 PyTorch。

c. 用 GraphViz 及其 Python 封装来生成网络图。最简单的安装方式是:

If you use Conda: ```bash conda install graphviz python-graphviz ``` 
Otherwise: [Install GraphViz](https://graphviz.gitlab.io/download/)  Then install the [Python wrapper for GraphViz](https://github.com/xflr6/graphviz) using pip:    ```    pip3 install graphviz    ```

2. 安装 HiddenLayer

A. 从 GitHub 中安装(开发者模式)

如果要在本地编辑或自定义库,使用此选项。

# Clone the repository
git clone git@github.com:waleedka/hiddenlayer.git
cd hiddenlayer

# Install in dev mode
pip install -e .

B. 使用 PIP

pip install hiddenlayer

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

沸騰15年

沸騰15年

林軍 / 商周出版 / 2010年09月19日 / NTD:430元

從一九九五年到二○○九年,中國互聯網崛起、發展和壯大。 在短短十五年間 產生了十五家市值超過十億的上市公司 這些前仆後繼的先行者 不但用網際網路創造了歷史,也改寫了自己的財富路徑。 這本關於中國互聯網產業歷史的書,脈絡清晰、生動鮮明地把一大批創業者的形象和他們的動人故事呈現在讀者眼前,值得一讀。 ——中國互聯網協會理事長、中國科協副主席 胡啟?? 林軍這本......一起来看看 《沸騰15年》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

随机密码生成器
随机密码生成器

多种字符组合密码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具