内容简介:在对于图像上的每一块颜色,计算与背景图的distance甚至更硬核一点,直接把各种可能的车辆图片存起来,然后跟相机视角的图片进行比较
在 CNN (Convolutional Neural Networks 卷积神经网络) 普遍运用之前,车辆检测是通过使用条件随机场或者SVM(支持向量机)来实现的。操作上分为两步,先是从图像上提取特征,然后基于特征建立模型,判断车辆位置。
template matching 模板匹配
对于图像上的每一块颜色,计算与背景图的distance
甚至更硬核一点,直接把各种可能的车辆图片存起来,然后跟相机视角的图片进行比较
这类解决方案统称 template matching
Color Histogram
template matching的缺陷也很明显,对于没有预存过的模板,自然无从识别。因此出现了 Color Histogram方案
将车辆的模板转换成颜色直方图,运算时比较目标物体与预存直方图的相似度。优点是同一个物体在不同角度仍可识别。比如对于一辆红色的车,从不同方向看过去,模板匹配无法很好地识别,而利用Color Histogram则不受影响。
HOG
Histogram of Oriented Gradients (定向梯度直方图), 相比于之前的特征,HOG特征更加健壮,并且无视颜色的影响。
操作的时候,首先捕捉图像的轮廓与纹理信息
然后将图像划分为多个cell。对每个cell计算梯度方向
统计每个cell的局部直方图
将结果归一化,得到的主方向将成为局部特征梯度方向
汇总每个cell得到的局部信息,就可以得到HOG特征
针对每一帧图像,检测车辆位置,形成连续追踪
以上所述就是小编给大家介绍的《从零开始的无人驾驶 02:Vehicle Detection》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 从零开始的无人驾驶
- Google工程师:从零开始学习无人驾驶技术 ——端到端无人驾驶
- 从 0 开始使用树莓派和 TensorFlow 构建自动驾驶项目
- 当Faster RCNN遇到FPGA,自动驾驶开始飞了
- 从零开始的无人驾驶 01:Lanes Finding with Computer Vision
- 无人驾驶入门1:无人驾驶概览
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
区块链技术驱动金融
阿尔文德·纳拉亚南、约什·贝努、爱德华·费尔顿、安德鲁·米勒、史蒂文·戈德费德 / 林华、王勇 / 中信出版社,中信出版集团 / 2016-8-25 / CNY 79.00
从数字货币及智能合约技术层面,解读了区块链技术在金融领域的运用。“如果你正在寻找一本在技术层面解释比特币是如何运作的,并且你有一定计算机科学和编程的基本知识,这本书应该很适合你。” 《区块链:技术驱动金融》回答了一系列关于比特币如何运用区块链技术运作的问题,并且着重讲述了各种技术功能,以及未来会形成的网络。比特币是如何运作的?它因何而与众不同?你的比特币安全吗?比特币用户如何匿名?区块链如何......一起来看看 《区块链技术驱动金融》 这本书的介绍吧!
html转js在线工具
html转js在线工具
RGB HSV 转换
RGB HSV 互转工具