python snownlp情感分析简易demo

栏目: Python · 发布时间: 7年前

内容简介:python snownlp情感分析简易demo

SnowNLP是国人开发的 python 类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。MIT许可下发行。

github 主页

我自己修改了上文链接中的python代码并加入些许注释,以方便你的理解:

from snownlp import SnowNLP
# SnowNLP库:
# words:分词
# tags:关键词
# sentiments:情感度
# pinyin:拼音
# keywords(limit):关键词
# summary:关键句子
# sentences:语序
# tf:tf值
# idf:idf值
s = SnowNLP(u'这个东西真心很赞')
# s.words         # [u'这个', u'东西', u'真心', u'很', u'赞']
print(s.words)
s.tags  # [(u'这个', u'r'), (u'东西', u'n'), (u'真心', u'd')
# , (u'很', u'd'), (u'赞', u'Vg')]
print(s.sentiments)
# s.sentiments    # 0.9769663402895832 positive的概率
# s.pinyin        # [u'zhe', u'ge', u'dong', u'xi', # u'zhen', u'xin', u'hen',
# u'zan']4
s = SnowNLP(u'「繁體字」「繁體中文」的叫法在臺灣亦很常見。')
# s.han           # u'「繁体字」「繁体中文」的叫法在台湾亦很常见。'
print(s.han)
from snownlp import SnowNLP
text = u'''
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。
它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理是一门融语言学、计算机科学、数学于一体的科学。
因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,
所以它与语言学的研究有着密切的联系,但又有重要的区别。
自然语言处理并不是一般地研究自然语言,
而在于研制能有效地实现自然语言通信的计算机系统,
特别是其中的软件系统。因而它是计算机科学的一部分。
'''
s = SnowNLP(text)
print(s.keywords(6))  # [u'语言', u'自然', u'计算机'] 不能用tags输出关键字.
s.summary(3)  # [u'因而它是计算机科学的一部分', u'自然语言处理是一门融语言学、计算机科学、
# 数学于一体的科学', u'自然语言处理是计算机科学领域与人工智能领域中的一个重要方向']s.sentences
# print(s.sentences)
print(s.sentiments)  # 1.0
s = SnowNLP([[u'这篇', u'文章'],
             [u'那篇', u'论文'],
             [u'这个']])
# print(s.tf)
# print(s.idf)
# print(s.sim([u'文章']))  # [0.3756070762985226, 0, 0]

在编译运行之前,先得安装snownlp包,后续还有pylab,pandas模块:

在VS Code终端(查看->集成终端)里面输入:

pip install snownlp

pip install pylab

pip install pandas

前提是你安装了pip,若是pip没有安装可以查看我之前的  文章

在VS Code中我们可以右键模块名查看定义,便能看到模块的实现了.不得不说VS Code很强大,希望微软能这么一直走下去,走向开源走向跨平台!!

然后我随便提取了《心灵捕手》豆瓣网评,放在了txt中:

其实大多数情况下,大陆的译名比港译要更有味道。

It is not ur fault!

我是在电视上偶尔才看到这个电影的,当时看的时候真的很感人。 为什么会有这么天才的人,却有着这样子曲折的人生。

是认为剧本很好却没有被完全拍出来:) 对演员的表演还是心存质疑一点点~ 呵呵

好评

前几日刚刚看过,一部触动心灵的电影,寻找真正的人生

这篇影评写的很棒,我的眼睛湿润了

很好的片子

最后就是处理的程序了:

from snownlp import SnowNLP
import pandas as pd
import pylab as pl
txt = open('F:/_analyse_Emotion.txt')
text = txt.readlines()
txt.close()
print('读入成功')
sentences = []
senti_score = []
for i in text:
    a1 = SnowNLP(i)
    a2 = a1.sentiments
    sentences.append(i)  # 语序...
    senti_score.append(a2)
    print('doing')
table = pd.DataFrame(sentences, senti_score)
# table.to_excel('F:/_analyse_Emotion.xlsx', sheet_name='Sheet1')
# ts = pd.Series(sentences, senti_score)
# ts = ts.cumsum()
# print(table)
x = [1, 2, 3, 4, 5, 6, 7, 8]
pl.mpl.rcParams['font.sans-serif'] = ['SimHei']
pl.plot(x, senti_score)
pl.title(u'心 灵 捕 手 网 评')
pl.xlabel(u'评 论 用 户')
pl.ylabel(u'情 感 程 度')
pl.show()

最后的效果:

python snownlp情感分析简易demo

可能有些不准确,我也是随便提取的数据,不过snownlp还是号称情感分析准确很高的!


以上所述就是小编给大家介绍的《python snownlp情感分析简易demo》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

老码识途

老码识途

韩宏 / 电子工业出版社 / 2012-8 / 56.00元

《老"码"识途:从机器码到框架的系统观逆向修炼之路》以逆向反汇编为线索,自底向上,从探索者的角度,原生态地刻画了对系统机制的学习,以及相关问题的猜测、追踪和解决过程,展现了系统级思维方式的淬炼方法。该思维方式是架构师应具备的一种重要素质。《老"码"识途:从机器码到框架的系统观逆向修炼之路》内容涉及反汇编、底层调试、链接、加载、钩子、异常处理、测试驱动开发、对象模型和机制、线程类封装、跨平台技术、插......一起来看看 《老码识途》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具