Python与C/C++混合编程的应用

栏目: C++ · 发布时间: 6年前

内容简介:TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,而是越来越专注领域。有的语言专注于简单高效,比如Python,内建的list,dict结构比c/c++易用太多,但同样为了安全、易用,语言也牺牲了部分性能。在有些领域,比如通信,性能很关键,但并不意味这个领域的coder只能苦苦挣扎于c/c++的陷阱中,比如可以使用多种语言混合编程。我看到的一个很好的Python与C/C++混合

TIOBE每个月都会新鲜出炉一份流行编程语言排行榜,这里会列出最流行的20种语言。排序说明不了语言的好坏,反应的不过是某个软件开发领域的热门程度。语言的发展不是越来越common,而是越来越专注领域。有的语言专注于简单高效,比如Python,内建的list,dict结构比c/c++易用太多,但同样为了安全、易用,语言也牺牲了部分性能。在有些领域,比如通信,性能很关键,但并不意味这个领域的coder只能苦苦挣扎于c/c++的陷阱中,比如可以使用多种语言混合编程。

我看到的一个很好的 Python 与C/C++混合编程的应用是NS3(Network Simulator3)一款网络模拟软件,它的内部计算引擎需要用高性能,但在用户建模部分需要灵活易用。NS3的选择是使用C/C++来模拟核心部件和协议,用python来建模和扩展。

这篇文章介绍Python和C/C++三种混合编程的方法,并对性能加以分析。

混合编程的原理

首先要说一下Python只是一个语言规范,实际上python有很多实现:CPython是标准Python,是由C编写的,python脚本被编译成CPython字节码,然后由虚拟机解释执行,垃圾回收使用引用计数,我们谈与C/C++混合编程实际指的是基于CPython解释上的。除此之外,还有Jython、IronPython、PyPy、Pyston,Jython是 Java 编写的,使用JVM的垃圾回收,可以与Java混合编程,IronPython面向.NET平台。

python与C/C++混合编程的本质是python调用C/C++编译的动态链接库,关键就是把python中的数据类型转换成c/c++中的数据类型,给编译函数处理,然后返回参数再转换成python中的数据类型。

python中使用ctypes moduel,将python类型转成c/c++类型

首先,编写一段累加数值的c代码:

extern "C"

{

int addBuf(char* data, int num, char* outData);

}

int addBuf(char* data, int num, char* outData)

{

for (int i = 0; i < num; ++i)

{

outData[i] = data[i] + 3; 

}

return num;

}

然后,将上面的代码编译成so库,使用下面的编译指令

>gcc -pthread -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC addbuf.c -o addbuf.o

最后编写python代码,使用ctypes库,将python类型转换成 c语言 需要的类型,然后传参调用so库函数:

from ctypes import * # cdll, c_int

lib = cdll.LoadLibrary('libmathBuf.so')

callAddBuf = lib.addBuf

num = 4

numbytes = c_int(num)

data_in = (c_byte * num)()

for i in range(num):

data_in[i] = i

data_out = (c_byte * num)()

ret = lib.addBuf(data_in, numbytes, data_out)  #调用so库中的函数

在C/C++程序中使用Python.h,写wrap包装接口

这种方法需要修改c/c++代码,在外部函数中处理入/出参,适配python的参数。写一段c代码将外部入参作为 shell 命令执行:

#include <Python.h>

static PyObject* SpamError;

static PyObject* spam_system(PyObject* self, PyObject* args)

{

const char* command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))  //将args参数按照string类型处理,给command赋值

return NULL;

sts = system(command); //调用系统命令

if (sts < 0) {

PyErr_SetString(SpamError, "System command failed");

return NULL;

}

return PyLong_FromLong(sts);    //将返回结果转换为PyObject类型

}

//方法表

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,

"Execute a shell command."},

{NULL, NULL, 0, NULL}

};

//模块初始化函数

PyMODINIT_FUNC initspam(void)

{

PyObject* m;

//m = PyModule_Create(&spammodule); // v3.4

m = Py_InitModule("spam", SpamMethods);

if (m == NULL)

return;

SpamError = PyErr_NewException("spam.error",NULL,NULL);

Py_INCREF(SpamError);

PyModule_AddObject(m,"error",SpamError);

}

处理上所有的入参、出参都作为PyObject对象来处理,然后使用转换函数把python的数据类型转换成c/c++中的类型,返回参数按相同方式处理。比第一种方法多了初始化函数,这部分是把编译的so库当做python module所必需要做的。

python这样使用:

imoprt spam

spam.system("ls")

使用c/c++编写python扩展可以参见: http://docs.python.org/2.7/extending/extending.html

使用SWIG,来生成独立的wrap文件

这种方式并不能算是一种新方式,实际上是基于第二中方式的一种包装。SWIG是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。SWIG能应用于各种不同类型的语言包括常用脚本编译语言例如Perl, PHP, Python, Tcl, Ruby, PHP,C#,Java,R等。

操作上,是针对c/c++程序编写独立的接口声明文件(通常很简单),swig会分析c/c++源程序自动分析接口要如何包装。在指定目标语言后,swig会生成额外的包装源码文件。编译so库时,把包装文件一起编译、连接即可。看个c代码例子:

int system(const char* command)

{

sts = system(command);

if (sts < 0) {

return NULL;

}

return sts;

}

c源码中去掉适配python的包装,仅定义system函数本身,这比第二种方式简洁很多,并且剔除了c代码与python的耦合代码,是c代码通用性更好。

然后编写swig接口声明文件spam.i:

%module spam

%{

#include "spam.h"

%}

%include "spam.h"

%include "typemaps.i"

int system(const char* INPUT);

这是一段语言无关的模块声明,要创建一个叫spam的模块,对system做一个声明,主要是声明参数作为入参使用。然后执行swig编译程序:

>swig -c++ -python spam.i

swig会生成spam_wrap.cxx和spam.py两个文件。先看spam_wrap.cxx,这个生成的文件很长,但关键的就是对函数的包装:

Python与C/C++混合编程的应用

包装函数传入的还是PyObejct对象,内部进行了类型转换,最终调了源码中的system函数。

生成的了另一个spam.py实际上是对so库又用python包装了一层(实际比较多余):

Python与C/C++混合编程的应用

这里使用_spam模块,这里实际上是把扩展命名为了_spam。关于swig在python上的应用可以参见: http://www.swig.org/Doc1.3/Python.html

下面就是编译和安装python 模块,Python提供了distutils module,可以很方便的编译安装python的module。像下面这样写一个安装脚本setup.py:

Python与C/C++混合编程的应用

执行 python setup.py build,即可以完成编译,程序会创建一个build目录,下面有编译好的so库。so库放在当前目录下,其实Python就可以通过import来加载模块了。当然也可以用 python setup.py install 把模块安装到语言的扩展库——site-packages目录中。关于build python扩展,可以参考 https://docs.python.org/2/extending/building.html#building

混合编程性能分析

混合编程的使用场景中,很重要一个就是性能攸关。那么这小节将通过几个小实验验证下混合编程的性能如何,或者说怎样写程序能发挥好混合编程的性能优势。

我们使用冒泡 排序 算法来验证性能。

1)实验一 使用冒泡程序验证python和c/c++程序的性能差距

python版冒泡程序:

def bubble(arr,length):

j = length - 1

while j >= 0:

i = 0

while i < j:

if arr[i] > arr[i+1]:

tmp = arr[i+1]

arr[i+1] = arr[i]

arr[i] = tmp

i += 1

j -= 1

c语言版冒泡排序

void bubble(int* arr,int length){

int j = length - 1;

int i;

int tmp;

while(j >= 0){

i = 0;

while(i < j){

if(arr[i] > arr[i+1]){

tmp = arr[i+1];

arr[i+1] = arr[i];

arr[i] = tmp;

}

i += 1;

}

j -= 1;

}

}

使用一个长度为100内容固定的数组,反复排序10000次(每次排序后,再把数组恢复成原始序列),记录执行时间:

在相同的机器上多次执行,Python版执行时间是10.3s左右,而c语言版本(未使用任何优化编译参数)执行时间只有0.29s左右。相比之下python的性能的确差很多(主要是python中list的操作跟c的数组相比,效率差非常多),但python中很多扩展都是c语言写的,目的就是为了提升效率,python用于数据分析的numpy库就拥有不错的性能。下个实验就验证,如果python使用c语言版本的冒泡排序扩展库,性能会提升多少。

2)实验二 python语言使用ctypes方式调用

这里直接使用c_int来定义了数组对象,这也节省了调用时数据类型转换的开销:

import time

from ctypes import *

IntArray100 = c_int * 100

arr = IntArray100(87,23,41, 3, 2, 9,10,23,0,21,5,15,93, 6,19,24,18,56,11,80,34, 5,98,33,11,25,99,44,33,78,

52,31,77, 5,22,47,87,67,46,83, 89,72,34,69, 4,67,97,83,23,47, 69, 8, 9,90,20,58,20,13,61,99,7,22,55,11,30,56,87,29,92,67,

99,16,14,51,66,88,24,31,23,42,76,37,82,10, 8, 9, 2,17,84,32,66,77,32,17, 5,68,86,22, 1, 0)

... ...

if __name__ == "__main__":

libbubble = CDLL('libbubble.so')

time1 = time.time()

for i in xrange(100000):

libbubble.initArr(arr1,arr,100)

libbubble.bubble(arr1,100)

time2 = time.time()

print time2 - time1

再次执行:

为了减少误差,把循环增加到10万次,结果c原生程序使用优化参数编译后用时0.65s左右。python使用c扩展后(相同编译参数)执行仅需2.3s左右。

3)实验三 在c语言中使用PyObject处理入参

这种方式是在python中依然使用list装入待排序数列,在c函数中把list赋值给数组,再进行排序,排好序后,再对原始list赋值。循环排序10万次,执行用时1.0s左右。

4) 实验四 使用swig来包装c方法

在接口文件中声明%array_class(int,intArray);然后在Python中使用initArray来作为数组,同样修改成10万次排序。python版本的程序(相同编译参数)执行仅需0.7s左右,比c原生程序慢大概7%。

结论

1.python 的list效率非常低,在高性能场景下避免对list大量循环、取值、赋值操作。如需要最好使用ctype中的数组,或者是用c语言来实现。

2.应该把耗时的cpu密集型的逻辑交给c/c++实现,python使用扩展即可。

Linux公社的RSS地址https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2018-10/155103.htm


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

运营制胜

运营制胜

张恒 / 电子工业出版社 / 2016-10-1 / 65

《运营制胜——从零系统学运营构建用户增长引擎》主要从内容运营、用户运营、推广运营三个方向来介绍产品运营方面的知识。 其中内容运营主要介绍了内容生成的机制、内容方向设定、内容输出、内容生产引擎、内容推荐机制、数据如何驱动内容运营、内容运营的KPI 设定、建立内容库、内容的赢利模式。用户运营主要介绍了产品的冷启动、获得种子用户及早期用户、建立用户增长引擎、利用心理学引爆产品用户增长、增加用户活跃......一起来看看 《运营制胜》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试