内容简介:更好的阅读体验,打开【阅读原文】,在PC上浏览Lucene用了很久,其版本更新也很快。在ES出来之后,直接使用Lucene的时候就比较少了,更多的就在ES框架下一站式完成,ES目前在项目中几乎占据了半壁江山。ES的功能很强大,使用过程中,有一个问题是绕不过的:就是中文分词。这是至关重要的一个问题,直接影响搜索结果的准确和召回。
更好的阅读体验,打开【阅读原文】,在PC上浏览
Lucene用了很久,其版本更新也很快。在ES出来之后,直接使用Lucene的时候就比较少了,更多的就在ES框架下一站式完成,ES目前在项目中几乎占据了半壁江山。
ES的功能很强大,使用过程中,有一个问题是绕不过的:就是中文分词。这是至关重要的一个问题,直接影响搜索结果的准确和召回。
一般来讲,分词的问题本身目前解决的已经相当不错了,大家用的比较多的是jieba分词,还有清华、斯坦福、复旦等开源的中文分词。如果要在ES中使用jieba分词,就需要定制一个ES的分词插件,将jieba分词load到ES中。
几年之前,因为项目需要,我撸过一个简单的ES插件,在github上开源: jieba分词ES插件,也有一些用户在使用,期间也在断断续续的更新。
其中的关键,通过阅读代码就会发现,在处理token的过程中,有以下属性需要处理:
-
CharTermAttribute
-
OffsetAttribute
-
TypeAttribute
-
PositionIncrementAttribute
分别代表了分词的结果的最小单元:term,分词的offset: startOffset
和 endOffset
,以及词性,例如word、或者数字、字母等等。
最后一个属性 PositionIncrementAttribute
比较难以理解,在特定的场合下才需要特殊的处理,大部分情况下默认的结果就可以,但在特定的场合下,会丢掉部分的文档。下文我们就详细解释这个属性,通过例子来说明这个是如何产生影响的,以及该如何解决。
我们先解释一下分词的结果,使用到的ES,以及插件版本如下:
-
elasticsearch-6.4.0
-
elasticsearch-jieba-plugin-6.4.0
安装好插件,启动ES:
./bin/elasticsearch
有如下输出,则说明插件加载成功:
... [2018-10-26T23:04:12,572][INFO ][o.e.p.PluginsService ] [z7z-6dR] loaded plugin [analysis-jieba] ...
准备好示例文档:
现在 高级产品经理\n2003。4-2003。11 产品副经理\n向产品群经理汇报工作\ 负责产品为:得普利麻\n2002。5-2003。3 产品副经理\n向产品群经理汇报工作\n负责推广产品为:精分(思瑞康),麻醉(得普利麻)
jieba包括两种分词模式:
-
index模式,适用于索引的分词,可以分词更多的term,照顾召回。
-
search模式,适用于查询的分词,分词结果没有交叉,更多考虑的是准确率的方面。
我们验证一下分词插件,以及两种模式的影响,通过如下命令,我们先看看 search
模式的分词效果:
curl -X GET "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' { "tokenizer" : "jieba_search", "text" : "现在 高级产品经理\n2003。4-2003。11 产品副经理\n向产品群经理汇报工作\ 负责产品为:得普利麻\n2002。5-2003。3 产品副经理\n向产品群经理汇报工作\n负责推广产品为:精分(思瑞康),麻醉(得普利麻)" }‘
查看输出:
{ "tokens": [ { "token": "现在", "start_offset": 0, "end_offset": 2, "type": "word", "position": 0 }, { "token": " ", "start_offset": 2, "end_offset": 3, "type": "word", "position": 1 }, { "token": "高级", "start_offset": 3, "end_offset": 5, "type": "word", "position": 2 }, { "token": "产品", "start_offset": 5, "end_offset": 7, "type": "word", "position": 3 }, { "token": "经理", "start_offset": 7, "end_offset": 9, "type": "word", "position": 4 }, { "token": "\n", "start_offset": 9, "end_offset": 10, "type": "word", "position": 5 }, { "token": "2003", "start_offset": 10, "end_offset": 14, "type": "word", "position": 6 }, { "token": "。", "start_offset": 14, "end_offset": 15, "type": "word", "position": 7 }, { "token": "4", "start_offset": 15, "end_offset": 16, "type": "word", "position": 8 }, { "token": "-", "start_offset": 16, "end_offset": 17, "type": "word", "position": 9 }, { "token": "2003", "start_offset": 17, "end_offset": 21, "type": "word", "position": 10 }, { "token": "。", "start_offset": 21, "end_offset": 22, "type": "word", "position": 11 }, { "token": "11", "start_offset": 22, "end_offset": 24, "type": "word", "position": 12 }, { "token": " ", "start_offset": 24, "end_offset": 25, "type": "word", "position": 13 }, { "token": "产品", "start_offset": 25, "end_offset": 27, "type": "word", "position": 14 }, { "token": "副经理", "start_offset": 27, "end_offset": 30, "type": "word", "position": 15 }, { "token": "\n", "start_offset": 30, "end_offset": 31, "type": "word", "position": 16 }, { "token": "向", "start_offset": 31, "end_offset": 32, "type": "word", "position": 17 }, { "token": "产品", "start_offset": 32, "end_offset": 34, "type": "word", "position": 18 }, { "token": "群", "start_offset": 34, "end_offset": 35, "type": "word", "position": 19 }, { "token": "经理", "start_offset": 35, "end_offset": 37, "type": "word", "position": 20 }, { "token": "汇报工作", "start_offset": 37, "end_offset": 41, "type": "word", "position": 21 }, { "token": "\n", "start_offset": 41, "end_offset": 42, "type": "word", "position": 22 }, { "token": "负责", "start_offset": 42, "end_offset": 44, "type": "word", "position": 23 }, { "token": "产品", "start_offset": 44, "end_offset": 46, "type": "word", "position": 24 }, { "token": "为", "start_offset": 46, "end_offset": 47, "type": "word", "position": 25 }, { "token": ":", "start_offset": 47, "end_offset": 48, "type": "word", "position": 26 }, { "token": "得", "start_offset": 48, "end_offset": 49, "type": "word", "position": 27 }, { "token": "普利", "start_offset": 49, "end_offset": 51, "type": "word", "position": 28 }, { "token": "麻", "start_offset": 51, "end_offset": 52, "type": "word", "position": 29 }, { "token": "\n", "start_offset": 52, "end_offset": 53, "type": "word", "position": 30 }, { "token": "2002", "start_offset": 53, "end_offset": 57, "type": "word", "position": 31 }, { "token": "。", "start_offset": 57, "end_offset": 58, "type": "word", "position": 32 }, { "token": "5", "start_offset": 58, "end_offset": 59, "type": "word", "position": 33 }, { "token": "-", "start_offset": 59, "end_offset": 60, "type": "word", "position": 34 }, { "token": "2003", "start_offset": 60, "end_offset": 64, "type": "word", "position": 35 }, { "token": "。", "start_offset": 64, "end_offset": 65, "type": "word", "position": 36 }, { "token": "3", "start_offset": 65, "end_offset": 66, "type": "word", "position": 37 }, { "token": " ", "start_offset": 66, "end_offset": 67, "type": "word", "position": 38 }, { "token": "产品", "start_offset": 67, "end_offset": 69, "type": "word", "position": 39 }, { "token": "副经理", "start_offset": 69, "end_offset": 72, "type": "word", "position": 40 }, { "token": "\n", "start_offset": 72, "end_offset": 73, "type": "word", "position": 41 }, { "token": "向", "start_offset": 73, "end_offset": 74, "type": "word", "position": 42 }, { "token": "产品", "start_offset": 74, "end_offset": 76, "type": "word", "position": 43 }, { "token": "群", "start_offset": 76, "end_offset": 77, "type": "word", "position": 44 }, { "token": "经理", "start_offset": 77, "end_offset": 79, "type": "word", "position": 45 }, { "token": "汇报工作", "start_offset": 79, "end_offset": 83, "type": "word", "position": 46 }, { "token": "\n", "start_offset": 83, "end_offset": 84, "type": "word", "position": 47 }, { "token": "负责", "start_offset": 84, "end_offset": 86, "type": "word", "position": 48 }, { "token": "推广", "start_offset": 86, "end_offset": 88, "type": "word", "position": 49 }, { "token": "产品", "start_offset": 88, "end_offset": 90, "type": "word", "position": 50 }, { "token": "为", "start_offset": 90, "end_offset": 91, "type": "word", "position": 51 }, { "token": ":", "start_offset": 91, "end_offset": 92, "type": "word", "position": 52 }, { "token": "精分", "start_offset": 92, "end_offset": 94, "type": "word", "position": 53 }, { "token": "(", "start_offset": 94, "end_offset": 95, "type": "word", "position": 54 }, { "token": "思", "start_offset": 95, "end_offset": 96, "type": "word", "position": 55 }, { "token": "瑞康", "start_offset": 96, "end_offset": 98, "type": "word", "position": 56 }, { "token": ")", "start_offset": 98, "end_offset": 99, "type": "word", "position": 57 }, { "token": ",", "start_offset": 99, "end_offset": 100, "type": "word", "position": 58 }, { "token": "麻醉", "start_offset": 100, "end_offset": 102, "type": "word", "position": 59 }, { "token": "(", "start_offset": 102, "end_offset": 103, "type": "word", "position": 60 }, { "token": "得", "start_offset": 103, "end_offset": 104, "type": "word", "position": 61 }, { "token": "普利", "start_offset": 104, "end_offset": 106, "type": "word", "position": 62 }, { "token": "麻", "start_offset": 106, "end_offset": 107, "type": "word", "position": 63 }, { "token": ")", "start_offset": 107, "end_offset": 108, "type": "word", "position": 64 } ]}
分词结果中,token对应的就是term属性,start_offset和end_offset对应的就是Offset属性,type类似于词性。这几个都是比较好理解的,那么 position
是什么含义呢?通过观察:
position
是分词之后term/token的先对位置,代表了顺序和距离。
这个例子中 产品
和 副经理
是紧挨着的,中间没有间隔。也就意味着如下的查询
{ "query": { "match_phrase":{ "field1": { "query": "产品经理", "slop": 0 } } }}
能够搜到我们的示例文档。这里要注意, slop
默认是0,可以不写。当 slop
要求为0的时候,就要求搜索词组 产品经理
在文档中连起来的,这个时候命中的是 产品经理
,而不是 产品|群|经理
, |
表示token分割。如果设置 slop
为1,则 产品|群|经理
也会命中。 slop
的大小,就是 position
的大小差异。
看下 index
模式,要更加复杂, PositionIncrement
的作用也是在这里体现。同样是上面的文本:
curl -X GET "localhost:9200/_analyze" -H 'Content-Type: application/json' -d' { "tokenizer" : "jieba_index", "text" : "现在 高级产品经理\n2003。4-2003。11 产品副经理\n向产品群经理汇报工作\ 负责产品为:得普利麻\n2002。5-2003。3 产品副经理\n向产品群经理汇报工作\n负责推广产品为:精分(思瑞康),麻醉(得普利麻)" }‘
结果如下,需要仔细对比和 search
的差异。
{ "tokens": [ { "token": "现在", "start_offset": 0, "end_offset": 2, "type": "word", "position": 0 }, { "token": " ", "start_offset": 2, "end_offset": 3, "type": "word", "position": 1 }, { "token": "高级", "start_offset": 3, "end_offset": 5, "type": "word", "position": 2 }, { "token": "产品", "start_offset": 5, "end_offset": 7, "type": "word", "position": 3 }, { "token": "经理", "start_offset": 7, "end_offset": 9, "type": "word", "position": 4 }, { "token": "\n", "start_offset": 9, "end_offset": 10, "type": "word", "position": 5 }, { "token": "2003", "start_offset": 10, "end_offset": 14, "type": "word", "position": 6 }, { "token": "。", "start_offset": 14, "end_offset": 15, "type": "word", "position": 7 }, { "token": "4", "start_offset": 15, "end_offset": 16, "type": "word", "position": 8 }, { "token": "-", "start_offset": 16, "end_offset": 17, "type": "word", "position": 9 }, { "token": "2003", "start_offset": 17, "end_offset": 21, "type": "word", "position": 10 }, { "token": "。", "start_offset": 21, "end_offset": 22, "type": "word", "position": 11 }, { "token": "11", "start_offset": 22, "end_offset": 24, "type": "word", "position": 12 }, { "token": " ", "start_offset": 24, "end_offset": 25, "type": "word", "position": 13 }, { "token": "产品", "start_offset": 25, "end_offset": 27, "type": "word", "position": 14 }, { "token": "副经理", "start_offset": 27, "end_offset": 30, "type": "word", "position": 15 }, { "token": "经理", "start_offset": 28, "end_offset": 30, "type": "word", "position": 16 }, { "token": "\n", "start_offset": 30, "end_offset": 31, "type": "word", "position": 17 }, { "token": "向", "start_offset": 31, "end_offset": 32, "type": "word", "position": 18 }, { "token": "产品", "start_offset": 32, "end_offset": 34, "type": "word", "position": 19 }, { "token": "群", "start_offset": 34, "end_offset": 35, "type": "word", "position": 20 }, { "token": "经理", "start_offset": 35, "end_offset": 37, "type": "word", "position": 21 }, { "token": "汇报", "start_offset": 37, "end_offset": 39, "type": "word", "position": 22 }, { "token": "汇报工作", "start_offset": 37, "end_offset": 41, "type": "word", "position": 22 }, { "token": "工作", "start_offset": 39, "end_offset": 41, "type": "word", "position": 23 }, { "token": "\n", "start_offset": 41, "end_offset": 42, "type": "word", "position": 24 }, { "token": "负责", "start_offset": 42, "end_offset": 44, "type": "word", "position": 25 }, { "token": "产品", "start_offset": 44, "end_offset": 46, "type": "word", "position": 26 }, { "token": "为", "start_offset": 46, "end_offset": 47, "type": "word", "position": 27 }, { "token": ":", "start_offset": 47, "end_offset": 48, "type": "word", "position": 28 }, { "token": "得", "start_offset": 48, "end_offset": 49, "type": "word", "position": 29 }, { "token": "普利", "start_offset": 49, "end_offset": 51, "type": "word", "position": 30 }, { "token": "麻", "start_offset": 51, "end_offset": 52, "type": "word", "position": 31 }, { "token": "\n", "start_offset": 52, "end_offset": 53, "type": "word", "position": 32 }, { "token": "2002", "start_offset": 53, "end_offset": 57, "type": "word", "position": 33 }, { "token": "。", "start_offset": 57, "end_offset": 58, "type": "word", "position": 34 }, { "token": "5", "start_offset": 58, "end_offset": 59, "type": "word", "position": 35 }, { "token": "-", "start_offset": 59, "end_offset": 60, "type": "word", "position": 36 }, { "token": "2003", "start_offset": 60, "end_offset": 64, "type": "word", "position": 37 }, { "token": "。", "start_offset": 64, "end_offset": 65, "type": "word", "position": 38 }, { "token": "3", "start_offset": 65, "end_offset": 66, "type": "word", "position": 39 }, { "token": " ", "start_offset": 66, "end_offset": 67, "type": "word", "position": 40 }, { "token": "产品", "start_offset": 67, "end_offset": 69, "type": "word", "position": 41 }, { "token": "副经理", "start_offset": 69, "end_offset": 72, "type": "word", "position": 42 }, { "token": "经理", "start_offset": 70, "end_offset": 72, "type": "word", "position": 43 }, { "token": "\n", "start_offset": 72, "end_offset": 73, "type": "word", "position": 44 }, { "token": "向", "start_offset": 73, "end_offset": 74, "type": "word", "position": 45 }, { "token": "产品", "start_offset": 74, "end_offset": 76, "type": "word", "position": 46 }, { "token": "群", "start_offset": 76, "end_offset": 77, "type": "word", "position": 47 }, { "token": "经理", "start_offset": 77, "end_offset": 79, "type": "word", "position": 48 }, { "token": "汇报", "start_offset": 79, "end_offset": 81, "type": "word", "position": 49 }, { "token": "汇报工作", "start_offset": 79, "end_offset": 83, "type": "word", "position": 49 }, { "token": "工作", "start_offset": 81, "end_offset": 83, "type": "word", "position": 50 }, { "token": "\n", "start_offset": 83, "end_offset": 84, "type": "word", "position": 51 }, { "token": "负责", "start_offset": 84, "end_offset": 86, "type": "word", "position": 52 }, { "token": "推广", "start_offset": 86, "end_offset": 88, "type": "word", "position": 53 }, { "token": "产品", "start_offset": 88, "end_offset": 90, "type": "word", "position": 54 }, { "token": "为", "start_offset": 90, "end_offset": 91, "type": "word", "position": 55 }, { "token": ":", "start_offset": 91, "end_offset": 92, "type": "word", "position": 56 }, { "token": "精分", "start_offset": 92, "end_offset": 94, "type": "word", "position": 57 }, { "token": "(", "start_offset": 94, "end_offset": 95, "type": "word", "position": 58 }, { "token": "思", "start_offset": 95, "end_offset": 96, "type": "word", "position": 59 }, { "token": "瑞康", "start_offset": 96, "end_offset": 98, "type": "word", "position": 60 }, { "token": ")", "start_offset": 98, "end_offset": 99, "type": "word", "position": 61 }, { "token": ",", "start_offset": 99, "end_offset": 100, "type": "word", "position": 62 }, { "token": "麻醉", "start_offset": 100, "end_offset": 102, "type": "word", "position": 63 }, { "token": "(", "start_offset": 102, "end_offset": 103, "type": "word", "position": 64 }, { "token": "得", "start_offset": 103, "end_offset": 104, "type": "word", "position": 65 }, { "token": "普利", "start_offset": 104, "end_offset": 106, "type": "word", "position": 66 }, { "token": "麻", "start_offset": 106, "end_offset": 107, "type": "word", "position": 67 }, { "token": ")", "start_offset": 107, "end_offset": 108, "type": "word", "position": 68 } ]}
因为 index
模式的原因, 产品副经理
分为了 产品|副经理|经理
。这个时候,合理的 position
就十分重要了。通过我最新的插件的实现,这里的 position
分别是14,15,16。这是正确的,因为要正确处理下面的结果。
当我们执行如下搜索:
{ "query": { "match_phrase":{ "field1": { "query": "产品经理" } } }, "highlight" : { "fields" : { "field1" : {} } }}
命中我们的示例文本,无间隔的 产品经理
可以命中,并且可以高亮,但是 产品副经理
没有命中,也没有高亮。
再看这个例子:
{ "query": { "match_phrase":{ "field1": { "query": "产品经理", "slop": 2 } } }, "highlight" : { "fields" : { "field1" : {} } }}
则,无间隔的 产品经理
可以命中,并且可以高亮;同时, 产品副经理
有命中, 产品
和 经理
分别高亮。这两个例子的差别,大家要细细体会。
那么如何正确的处理 position
呢,关键就在于 PositionIncrementAttribute
属性的处理,通常我们使用 search
模式类似的分词是不会遇到问题的,即使使用默认的 PositionIncrementAttribute
的实现:根据分词得到的token,每次 +1
,从而得到 position
。
但默认的实现,遇到如下的情况,就会出现问题:
示例文本:
中国人民解放军胜利了。
如果采用默认的实现,则输出:
{ "tokens": [ { "token": "中国", "start_offset": 0, "end_offset": 2, "type": "word", "position": 0 }, { "token": "中国人", "start_offset": 0, "end_offset": 3, "type": "word", "position": 1 }, { "token": "中国人民解放军", "start_offset": 0, "end_offset": 7, "type": "word", "position": 2 }, { "token": "国人", "start_offset": 1, "end_offset": 3, "type": "word", "position": 4 }, { "token": "人民", "start_offset": 2, "end_offset": 4, "type": "word", "position": 5 }, { "token": "解放", "start_offset": 4, "end_offset": 6, "type": "word", "position": 6 }, { "token": "解放军", "start_offset": 4, "end_offset": 7, "type": "word", "position": 7 }, { "token": "胜利", "start_offset": 7, "end_offset": 9, "type": "word", "position": 8 }, { "token": "了", "start_offset": 9, "end_offset": 10, "type": "word", "position": 9 } ]}
根据这样的 position
,我们如下的查询,就找不到这个示例文档,从而产生丢数据的现象。
{ "query": { "match_phrase":{ "field1": { "query": "中国人民" } } }, "highlight" : { "fields" : { "field1" : {} } }}
本来 中国人民
在示例中是无间隔紧邻的,但是由于 position
解析的问题,直接导致 slop
已经变成了4,所以必须制定查询中的 slop
比较大,才能够返回正确的文档,但这里Rank也会受到影响。
看一下正确 position
的结果。
{ "tokens": [ { "token": "中国", "start_offset": 0, "end_offset": 2, "type": "word", "position": 0 }, { "token": "中国人", "start_offset": 0, "end_offset": 3, "type": "word", "position": 0 }, { "token": "中国人民解放军", "start_offset": 0, "end_offset": 7, "type": "word", "position": 0 }, { "token": "国人", "start_offset": 1, "end_offset": 3, "type": "word", "position": 0 }, { "token": "人民", "start_offset": 2, "end_offset": 4, "type": "word", "position": 1 }, { "token": "解放", "start_offset": 4, "end_offset": 6, "type": "word", "position": 2 }, { "token": "解放军", "start_offset": 4, "end_offset": 7, "type": "word", "position": 2 }, { "token": "胜利", "start_offset": 7, "end_offset": 9, "type": "word", "position": 3 }, { "token": "了", "start_offset": 9, "end_offset": 10, "type": "word", "position": 4 } ]}
其中, 中国
是0, 人民
是1,就可以命中了。
基本上,在处理token的时候,要判断``是1,还是0。这里的Lucene实现机制不好,对于分词的实现约束比较多,并且只考虑了英文。现在的实现,优先考虑了召回。极个别情况,还是会有些准确率的问题。
另外一个层面,要从词的切分的角度处理,分词的结果应该提供一个最细粒度的、无交叉的切分,这个方式用来做索引,会比较好一些。那这样,默认的 PositionIncrement
也是能够满足需求的。接下来看看, jieba
是否可以改造一下,支持第三种分词的模式:最细粒度的、无交叉的切分。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 会 split 字符串的你,也来学下这几个词组吧
- 海量数据搜索---搜索引擎
- 海量数据搜索——搜索引擎
- excel vba 实现跨表单(sheet) 搜索 - 显示搜索行记录搜索历史
- 深度优先搜索和广度优先搜索
- 图解:深度优先搜索与广度优先搜索
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。