内容简介:它的项目地址为:先从一个简单的官方示例来看,这是一个同步
OKHttp
是目前 Android
平台主流的网络请求的基础框架。因此我们有必要对其源码进行阅读学习,了解其内部的原理、项目结构、以及请求的执行过程。
它的项目地址为: github.com/square/okht…
0x00 简单使用
先从一个简单的官方示例来看,这是一个同步 GET
请求
public class GetExample { //1.http客户端 OkHttpClient client = new OkHttpClient(); String run(String url) throws IOException { //2.构造请求 Request request = new Request.Builder() .url(url) .build(); //3.执行请求,获取响应数据 try (Response response = client.newCall(request).execute()) { return response.body().string(); } } public static void main(String[] args) throws IOException { GetExample example = new GetExample(); String response = example.run("https://raw.github.com/square/okhttp/master/README.md"); System.out.println(response); } } 复制代码
可以看出这个 GET
请求操作是很简单的。有几个很重要的接口
-
OKHttpClient
: 它代表着http
客户端 -
Request
:它封装了请求对象,可以构造一个http
请求对象 -
Response
:封装了响应结果 -
Call
:client.newCall
调用后生成一个请求执行对象Call
,它封装了请求执行过程。
这几个接口是 程序员 在使用 OKHttp
库中经常遇到的。
接下来将从这个示例开始阅读 OkHttp
的源码
0x01 Call.execute()
跟进源码后发现这个方法是在 Call
中的接口
/** * A call is a request that has been prepared for execution. A call can be canceled. As this object * represents a single request/response pair (stream), it cannot be executed twice. */ public interface Call extends Cloneable { //... //同步执行请求 Response execute() throws IOException; //将请求加入队列 void enqueue(Callback responseCallback); //... } 复制代码
从源码注释知道, Call
是一个准备请求的执行对象,它可以被取消,代表一个 “请求/响应” 对,不能执行两次。
RealCall
Call
的实现类是 RealCall
,因此 execute
方法
@Override public Response execute() throws IOException { synchronized (this) { if (executed) throw new IllegalStateException("Already Executed"); executed = true; } captureCallStackTrace(); eventListener.callStart(this); try { client.dispatcher().executed(this); Response result = getResponseWithInterceptorChain(); if (result == null) throw new IOException("Canceled"); return result; } catch (IOException e) { eventListener.callFailed(this, e); throw e; } finally { client.dispatcher().finished(this); } } 复制代码
这个方法也不是很长,逻辑很简单:
-
同步锁检查该请求是否已经执行,如果没有则标记
executed = ture
,否则抛出异常 -
调用了回调函数
callStart
-
okhttp
客户端调用dispatcher
将执行请求对象 -
调用了
getResponseWithInterceptorChain
方法获取到响应数据Response
,这个方法很重要,后面会继续跟进 -
然后是对请求失败的回调
callFailed
-
最后还是使用
dispather
对象调用finished
方法,完成请求
这里的逻辑还是比较清晰的,出现两个重要的方法
dispatcher.execute getResponseWithInterceptorChain
接下来分别看这两个方法
0x02 Dispatcher
public final class Dispatcher { /** Executes calls. Created lazily. */ private @Nullable ExecutorService executorService; /** Ready async calls in the order they'll be run. */ private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */ private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); /** Running synchronous calls. Includes canceled calls that haven't finished yet. */ private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>(); //... synchronized void enqueue(AsyncCall call) { if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) { runningAsyncCalls.add(call); executorService().execute(call); } else { readyAsyncCalls.add(call); } } /** Used by {@code Call#execute} to signal it is in-flight. */ synchronized void executed(RealCall call) { runningSyncCalls.add(call); } /** Used by {@code AsyncCall#run} to signal completion. */ void finished(AsyncCall call) { finished(runningAsyncCalls, call, true); } /** Used by {@code Call#execute} to signal completion. */ void finished(RealCall call) { finished(runningSyncCalls, call, false); } private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) { int runningCallsCount; Runnable idleCallback; synchronized (this) { if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!"); if (promoteCalls) promoteCalls(); runningCallsCount = runningCallsCount(); idleCallback = this.idleCallback; } if (runningCallsCount == 0 && idleCallback != null) { idleCallback.run(); } } } 复制代码
可以看出 Dispatcher
是一个调度器,它内部有一个线程池 executorService
,还有三个队列,分别代表同步请求进行队列、异步请求等待队列、异步请求执行队列。
我们发现调用execute方法时就是将Call对象加入到同步请求进行队列runningSyncCalls中,而调用finished 方法则是将Call请求从队列中移除
0x03 getResponseWithInterceptorChain
现在在回到 RealCall
源码中,这个方法可以说是 OkHttp
最关键的部分了
Response getResponseWithInterceptorChain() throws IOException { // Build a full stack of interceptors. List<Interceptor> interceptors = new ArrayList<>(); interceptors.addAll(client.interceptors());//添加程序员自定义的的拦截器 interceptors.add(retryAndFollowUpInterceptor);//重试和重定向拦截器 interceptors.add(new BridgeInterceptor(client.cookieJar()));//处理cookie的拦截器 interceptors.add(new CacheInterceptor(client.internalCache()));//处理缓存的拦截器 interceptors.add(new ConnectInterceptor(client));//负责连接的拦截器 if (!forWebSocket) { interceptors.addAll(client.networkInterceptors());//添加程序员自定义的network拦截器 } interceptors.add(new CallServerInterceptor(forWebSocket));//调用服务拦截器 Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0, originalRequest, this, eventListener, client.connectTimeoutMillis(), client.readTimeoutMillis(), client.writeTimeoutMillis()); return chain.proceed(originalRequest); } 复制代码
在添加了一系列的拦截器之后,又构造了一个拦截器责任链,这个 RealInterceptorChain
包含了所有的拦截器对象。然后调用 chain.proceed
方法开始执行请求,这时就到了 RealInterceptorChain
这个类中。
0x04 RealInterceptorChain
@Override public Response proceed(Request request) throws IOException { return proceed(request, streamAllocation, httpCodec, connection); } public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec, RealConnection connection) throws IOException { if (index >= interceptors.size()) throw new AssertionError(); calls++; //省略无关代码... //1. 执行拦截器责任链中的下一个拦截器 RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec, connection, index + 1, request, call, eventListener, connectTimeout, readTimeout, writeTimeout); //2. 获取当前的拦截器 Interceptor interceptor = interceptors.get(index); //3. 执行拦截,并返回响应 Response response = interceptor.intercept(next); //省略... return response; } 复制代码
可以看到,在 proceed
方法,又构造了 RealInterceptorChain
并且调用了 interceptor.intercept
方法,
而这个方法中又会调用 next.proceed
方法,直至返回 response
。这个过程有点像递归调用。
0x05 Interceptor
拦截器,它是一个接口,内部还有一个 Chain
接口
public interface Interceptor { Response intercept(Chain chain) throws IOException; interface Chain { Request request(); Response proceed(Request request) throws IOException; /** * Returns the connection the request will be executed on. This is only available in the chains * of network interceptors; for application interceptors this is always null. */ @Nullable Connection connection(); Call call(); int connectTimeoutMillis(); Chain withConnectTimeout(int timeout, TimeUnit unit); int readTimeoutMillis(); Chain withReadTimeout(int timeout, TimeUnit unit); int writeTimeoutMillis(); Chain withWriteTimeout(int timeout, TimeUnit unit); } } 复制代码
所有的拦截器都需要实现这个接口。
0x06 异步的情况
public final class AsynchronousGet { private final OkHttpClient client = new OkHttpClient(); public void run() throws Exception { Request request = new Request.Builder() .url("http://publicobject.com/helloworld.txt") .build(); //调用enqueue方法,并设置回调接口 client.newCall(request).enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { e.printStackTrace(); } @Override public void onResponse(Call call, Response response) throws IOException { //这里获取到响应结果数据 } }); } 复制代码
然后我们再看 RealCall
中的 enqueue
方法
@Override public void enqueue(Callback responseCallback) { synchronized (this) { if (executed) throw new IllegalStateException("Already Executed"); executed = true; } captureCallStackTrace(); eventListener.callStart(this); //最终执行了dispatcher的enqueue方法 client.dispatcher().enqueue(new AsyncCall(responseCallback)); } 复制代码
其实是执行了 dispatcher
中的 enqueue
方法
synchronized void enqueue(AsyncCall call) { if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) { runningAsyncCalls.add(call); executorService().execute(call); } else { readyAsyncCalls.add(call); } } 复制代码
在 dispatcher
中通过线程池来执行 AsyncCall
对象,因此跟进到 AsyncCall
中的 execute
方法
@Override protected void execute() { boolean signalledCallback = false; try { //最终还是调用了getResponseWithInterceptorChain()!!! Response response = getResponseWithInterceptorChain(); if (retryAndFollowUpInterceptor.isCanceled()) { signalledCallback = true; responseCallback.onFailure(RealCall.this, new IOException("Canceled")); } else { signalledCallback = true; responseCallback.onResponse(RealCall.this, response); } } catch (IOException e) { if (signalledCallback) { // Do not signal the callback twice! Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e); } else { eventListener.callFailed(RealCall.this, e); responseCallback.onFailure(RealCall.this, e); } } finally { client.dispatcher().finished(this); } } 复制代码
发现最终还是执行了 getResponseWithInterceptorChain
,因此不管是同步还是异步、最终的流程还是一样。
0x07 总结
-
OKHttpClient
这是一个 http
客户端。构建很简单,可以使用无参构造函数。其内部是通过 Builder
对象进行构建的。也可以通过其内部静态类 Builder
来构建,然后通过 builder
设置 OkHttpClient
构造参数。
-
Request
请求对象。其内部也是使用 Builder
模式封装了构造的过程,通过 Builder
使用链式调用也是目前很多开源库中常见的模式。
-
Response
响应结果。客户端执行后返回响应结果,通过 Response
可以很方便的获取到响应数据。
-
Call
请求执行。可以执行同步或者异步的请求,分别将请求发送到 dispatcher
-
Dispatcher
调度器。其内部有一个线程池,并维护了三个队列:同步进行请求队列、异步请求等待队列、异步请求进行队列。
还有两个重要的方法 execute
和 enqueue
方法,分别代表同步、异步的方法。这两个方法的最终的执行流程都是一样的
-
Interceptor
拦截器。拦截器在 OKHttpClient
中使是用责任链模式来实现的。 Okhttp
中的关键的流程是通过拦截器责任链来完成的。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 熔断器 Hystrix 源码解析 —— 命令执行(二)之执行隔离策略
- 以太坊源码分析—交易的执行
- 走近源码:Redis 如何执行命令
- Arthas 源码分析(三):命令执行过程
- 从源码剖析useState的执行过程
- MyBatis 源码解析(二):SqlSession 执行流程
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
OpenCV3编程入门
毛星云 / 电子工业出版社 / 2015-2 / 79
OpenCV在计算机视觉领域扮演着重要的角色。作为一个基于开源发行的跨平台计算机视觉库,OpenCV实现了图像处理和计算机视觉方面的很多通用算法。本书以当前最新版本的OpenCV最常用最核心的组件模块为索引,深入浅出地介绍了OpenCV2和OpenCV3中的强大功能、性能,以及新特性。书本配套的OpenCV2和OpenCV3双版本的示例代码包中,含有总计两百多个详细注释的程序源代码与思路说明。读者......一起来看看 《OpenCV3编程入门》 这本书的介绍吧!