大讲堂 | 面向大数据的图聚类方法

栏目: 数据库 · 发布时间: 6年前

内容简介:雷锋网AI研习社讯:聚类是统计学、机器学习和数据挖掘领域的重要研究问题之一,其目的是将数据对象划分为多个类或簇(cluster),使同一簇中的对象之间有较高的相似度,而不同簇中的对象有较大的差异。聚类是数据分析的重要手段,在客户分群、基因识别、文本分析、空间数据处理、卫星照片分析、医疗影像自动检测等领域有着广泛的应用。基于图的聚类方法通过将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到聚类的目的。与传统的聚类算法相比,它能工作在任意的空间、能对任意形状的数据

雷锋网AI研习社讯:聚类是统计学、机器学习和数据挖掘领域的重要研究问题之一,其目的是将数据对象划分为多个类或簇(cluster),使同一簇中的对象之间有较高的相似度,而不同簇中的对象有较大的差异。聚类是数据分析的重要手段,在客户分群、基因识别、文本分析、空间数据处理、卫星照片分析、医疗影像自动检测等领域有着广泛的应用。基于图的聚类方法通过将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到聚类的目的。与传统的聚类算法相比,它能工作在任意的空间、能对任意形状的数据进行聚类。但是,由于这类算法需要进行特征向量分解,具有较高的复杂度,所以在大数据时代面临巨大的挑战。我们针对大数据的需求,提出了一系列新的图聚类方法及优化方法。

分享主题

Graph-based Clustering of Large-scale Data(面向大数据的图聚类方法)

分享嘉宾

陈小军,深圳大学计算机与软件学院讲师,主要研究方向为无监督学习、特征选择、集成学习等。发表了40余篇学术论文,包括十余篇CCF A类文章,如SIGKDD、ICDE、ICCV、AAAI、IJCAI、TKDE、TNNLS等。

分享提纲

1、聚类

2、图聚类及归一化割

3、分享的工作:

ISR: Improved Spectral Rotation [IJCAI 2017]

DNC: Direct Normalized Cut [SIGKDD 2018]

BKM: Balanced k-means for anchor generation [SIGKDD 2018]

分享时间

(北京时间 )  10 月 26 日(星期五)  20:00

直播链接

http://www.mooc.ai/open/course/584

大讲堂 | 面向大数据的图聚类方法

想了解更多雷锋网 AI 研习社直播?

欢迎移步 雷锋网 (公众号:雷锋网) AI 研习社社区 ~

雷锋网版权文章,未经授权禁止转载。详情见 转载须知

大讲堂 | 面向大数据的图聚类方法

以上所述就是小编给大家介绍的《大讲堂 | 面向大数据的图聚类方法》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

全栈开发之道

全栈开发之道

和凌志 / 电子工业出版社 / 68.00元

全栈(Full Stack)是一种全新的以前端为主导的框架,框架选型聚焦在MEAN(MongoDB、Express、AngularJS、Node.js)上。选用MEAN全栈技术,可以快速地实现敏捷开发,尤其是到了产品的运营阶段,其优势表现得非常明显。本书主要介绍MEAN全栈技术,分为入门篇、基础篇和实战篇,入门篇对全栈进行了概述,基础篇重点介绍了全栈的四个主要技术,即MongoDB、Express......一起来看看 《全栈开发之道》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具