用Python实现机器学习算法

栏目: Python · 发布时间: 6年前

内容简介:在这一章节里,我们将实现一个简单的神经网络架构,将 2 维的输入向量映射成二进制输出值。我们的神经网络有 2 个输入神经元,含 6 个隐藏神经元隐藏层及 1 个输出神经元。我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为W我们的训练集由 m = 750 个样本组成。因此,我们的矩阵维度如下:
编辑推荐:

本文来自于网络,文章详细介绍了使用 Python 实现机器学习算法的损失函数、反向传播过程等相关知识。

在这一章节里,我们将实现一个简单的神经网络架构,将 2 维的输入向量映射成二进制输出值。我们的神经网络有 2 个输入神经元,含 6 个隐藏神经元隐藏层及 1 个输出神经元。

我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为W h ,隐藏层和输出层之间的权重矩阵为W o 。除了连接神经元的权重向量外,每个隐藏和输出的神经元都会有一个大小为 1 的偏置量。

我们的训练集由 m = 750 个样本组成。因此,我们的矩阵维度如下:

训练集维度: X = (750,2)

目标维度: Y = (750,1)

W h 维度:(m,nhidden) = (2,6)

b h 维度:(bias vector):(1,nhidden) = (1,6)

W o 维度: (nhidden,noutput)= (6,1)

b o 维度:(bias vector):(1,noutput) = (1,1)

用Python实现机器学习算法

损失函数

我们使用与 Logistic 回归算法相同的损失函数:

用Python实现机器学习算法

对于多类别的分类任务,我们将使用这个函数的通用形式作为损失函数,称之为分类交叉熵函数。

训练

我们将用梯度下降法来训练我们的神经网络,并通过反向传播法来计算所需的偏导数。训练过程主要有以下几个步骤:

1. 初始化参数(即权重量和偏差量)

2. 重复以下过程,直到收敛:

通过网络传播当前输入的批次大小,并计算所有隐藏和输出单元的激活值和输出值。

针对每个参数计算其对损失函数的偏导数

更新参数

前向传播过程

首先,我们计算网络中每个单元的激活值和输出值。为了加速这个过程的实现,我们不会单独为每个输入样本执行此操作,而是通过矢量化对所有样本一次性进行处理。其中:

A h 表示对所有训练样本激活隐层单元的矩阵

O h 表示对所有训练样本输出隐层单位的矩阵

隐层神经元将使用 tanh 函数作为其激活函数:

用Python实现机器学习算法

输出层神经元将使用 sigmoid 函数作为激活函数:

用Python实现机器学习算法

激活值和输出值计算如下(·表示点乘):

用Python实现机器学习算法

反向传播过程

为了计算权重向量的更新值,我们需要计算每个神经元对损失函数的偏导数。这里不会给出这些公式的推导,你会在其他网站上找到很多更好的解释。

对于输出神经元,梯度计算如下(矩阵符号):

用Python实现机器学习算法

对于输入和隐层的权重矩阵,梯度计算如下:

用Python实现机器学习算法

权重更新

用Python实现机器学习算法

In [3]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import make_circles

from sklearn.model_selection import train_test_split

np.random.seed(123)

% matplotlib inline

数据集

In [4]:

X, y = make_circles(n_samples=1000, factor=0.5, noise=.1)

fig = plt.figure(figsize=(8,6))

plt.scatter(X[:,0], X[:,1], c=y)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.title("Dataset")

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.show()

用Python实现机器学习算法

In [5]:

# reshape targets to get column vector with shape (n_samples, 1)

y_true = y[:, np.newaxis]

# Split the data into a training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y_true)

print(f'Shape X_train: {X_train.shape}')

print(f'Shape y_train: {y_train.shape}')

print(f'Shape X_test: {X_test.shape}')

print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1)

Shape X_test: (250, 2)

Shape y_test: (250, 1)

Neural Network Class

class NeuralNet():

def __init__(self, n_inputs, n_outputs, n_hidden):

self.n_inputs = n_inputs

self.n_outputs = n_outputs

self.hidden = n_hidden

# Initialize weight matrices and bias vectors

self.W_h = np.random.randn(self.n_inputs, self.hidden)

self.b_h = np.zeros((1, self.hidden))

self.W_o = np.random.randn(self.hidden, self.n_outputs)

self.b_o = np.zeros((1, self.n_outputs))

def sigmoid(self, a):

return 1 / (1 + np.exp(-a))

def forward_pass(self, X):

"""

Propagates the given input X forward through the net.

Returns:

A_h: matrix with activations of all hidden neurons for all input examples

O_h: matrix with outputs of all hidden neurons for all input examples

A_o: matrix with activations of all output neurons for all input examples

O_o: matrix with outputs of all output neurons for all input examples

"""

# Compute activations and outputs of hidden units

A_h = np.dot(X, self.W_h) + self.b_h

O_h = np.tanh(A_h)

# Compute activations and outputs of output units

A_o = np.dot(O_h, self.W_o) + self.b_o

O_o = self.sigmoid(A_o)

outputs = {

"A_h": A_h,

"A_o": A_o,

"O_h": O_h,

"O_o": O_o,

}

return outputs

def cost(self, y_true, y_predict, n_samples):

"""

Computes and returns the cost over all examples

"""

# same cost function as in logistic regression

cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict)))

cost = np.squeeze(cost)

assert isinstance(cost, float)

return cost

def backward_pass(self, X, Y, n_samples, outputs):

"""

Propagates the errors backward through the net.

Returns:

dW_h: partial derivatives of loss function w.r.t hidden weights

db_h: partial derivatives of loss function w.r.t hidden bias

dW_o: partial derivatives of loss function w.r.t output weights

db_o: partial derivatives of loss function w.r.t output bias

"""

dA_o = (outputs["O_o"] - Y)

dW_o = (1 / n_samples) * np.dot(outputs["O_h"].T, dA_o)

db_o = (1 / n_samples) * np.sum(dA_o)

dA_h = (np.dot(dA_o, self.W_o.T)) * (1 - np.power(outputs["O_h"], 2))

dW_h = (1 / n_samples) * np.dot(X.T, dA_h)

db_h = (1 / n_samples) * np.sum(dA_h)

gradients = {

"dW_o": dW_o,

"db_o": db_o,

"dW_h": dW_h,

"db_h": db_h,

}

return gradients

def update_weights(self, gradients, eta):

"""

Updates the model parameters using a fixed learning rate

"""

self.W_o = self.W_o - eta * gradients["dW_o"]

self.W_h = self.W_h - eta * gradients["dW_h"]

self.b_o = self.b_o - eta * gradients["db_o"]

self.b_h = self.b_h - eta * gradients["db_h"]

def train(self, X, y, n_iters=500, eta=0.3):

"""

Trains the neural net on the given input data

"""

n_samples, _ = X.shape

for i in range(n_iters):

outputs = self.forward_pass(X)

cost = self.cost(y, outputs["O_o"], n_samples=n_samples)

gradients = self.backward_pass(X, y, n_samples, outputs)

if i % 100 == 0:

print(f'Cost at iteration {i}: {np.round(cost, 4)}')

self.update_weights(gradients, eta)

def predict(self, X):

"""

Computes and returns network predictions for given dataset

"""

outputs = self.forward_pass(X)

y_pred = [1 if elem >= 0.5 else 0 for elem in outputs["O_o"]]

return np.array(y_pred)[:, np.newaxis]

初始化并训练神经网络

nn = NeuralNet(n_inputs=2, n_hidden=6, n_outputs=1)

print("Shape of weight matrices and bias vectors:")

print(f'W_h shape: {nn.W_h.shape}')

print(f'b_h shape: {nn.b_h.shape}')

print(f'W_o shape: {nn.W_o.shape}')

print(f'b_o shape: {nn.b_o.shape}')

print()

print("Training:")

nn.train(X_train, y_train, n_iters=2000, eta=0.7)

Shape of weight matrices and bias vectors:

W_h shape: (2, 6)

b_h shape: (1, 6)

W_o shape: (6, 1)

b_o shape: (1, 1)

Training:

Cost at iteration 0: 1.0872

Cost at iteration 100: 0.2723

Cost at iteration 200: 0.1712

Cost at iteration 300: 0.1386

Cost at iteration 400: 0.1208

Cost at iteration 500: 0.1084

Cost at iteration 600: 0.0986

Cost at iteration 700: 0.0907

Cost at iteration 800: 0.0841

Cost at iteration 900: 0.0785

Cost at iteration 1000: 0.0739

Cost at iteration 1100: 0.0699

Cost at iteration 1200: 0.0665

Cost at iteration 1300: 0.0635

Cost at iteration 1400: 0.061

Cost at iteration 1500: 0.0587

Cost at iteration 1600: 0.0566

Cost at iteration 1700: 0.0547

Cost at iteration 1800: 0.0531

Cost at iteration 1900: 0.0515

测试神经网络

n_test_samples, _ = X_test.shape

y_predict = nn.predict(X_test)

print(f"Classification accuracy on test set: {(np.sum(y_predict == y_test)/n_test_samples)*100} %")

Classification accuracy on test set: 98.4 %

可视化决策边界

X_temp, y_temp = make_circles(n_samples=60000, noise=.5)

y_predict_temp = nn.predict(X_temp)

y_predict_temp = np.ravel(y_predict_temp)

fig = plt.figure(figsize=(8,12))

ax = fig.add_subplot(2,1,1)

plt.scatter(X[:,0], X[:,1], c=y)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.title("Training and test set")

ax = fig.add_subplot(2,1,2)

plt.scatter(X_temp[:,0], X_temp[:,1], c=y_predict_temp)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.title("Decision boundary")

Out[11]:Text(0.5,1,'Decision boundary')

用Python实现机器学习算法


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

虚拟现实:最后的传播

虚拟现实:最后的传播

聂有兵 / 中国发展出版社 / 2017-4-1 / 39.00

本书对“虚拟现实”这一诞生自70年代却在今天成为热门话题的概念进行了历史发展式的分析和回顾,认为虚拟现实是当今最重大的社会变革的技术因素之一,对虚拟现实在未来百年可能给人类社会的各个层面带来的影响进行说明,结合多个大众媒介的发展趋势,合理地推演未来虚拟现实在政治、经济、文化等领域的态势,并基于传播学理论框架提出了几个新的观点。对于普通读者,本书可以普及一般的虚拟现实知识;对于传媒行业,本书可以引导......一起来看看 《虚拟现实:最后的传播》 这本书的介绍吧!

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具