用Python实现机器学习算法

栏目: Python · 发布时间: 6年前

内容简介:在这一章节里,我们将实现一个简单的神经网络架构,将 2 维的输入向量映射成二进制输出值。我们的神经网络有 2 个输入神经元,含 6 个隐藏神经元隐藏层及 1 个输出神经元。我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为W我们的训练集由 m = 750 个样本组成。因此,我们的矩阵维度如下:
编辑推荐:

本文来自于网络,文章详细介绍了使用 Python 实现机器学习算法的损失函数、反向传播过程等相关知识。

在这一章节里,我们将实现一个简单的神经网络架构,将 2 维的输入向量映射成二进制输出值。我们的神经网络有 2 个输入神经元,含 6 个隐藏神经元隐藏层及 1 个输出神经元。

我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为W h ,隐藏层和输出层之间的权重矩阵为W o 。除了连接神经元的权重向量外,每个隐藏和输出的神经元都会有一个大小为 1 的偏置量。

我们的训练集由 m = 750 个样本组成。因此,我们的矩阵维度如下:

训练集维度: X = (750,2)

目标维度: Y = (750,1)

W h 维度:(m,nhidden) = (2,6)

b h 维度:(bias vector):(1,nhidden) = (1,6)

W o 维度: (nhidden,noutput)= (6,1)

b o 维度:(bias vector):(1,noutput) = (1,1)

用Python实现机器学习算法

损失函数

我们使用与 Logistic 回归算法相同的损失函数:

用Python实现机器学习算法

对于多类别的分类任务,我们将使用这个函数的通用形式作为损失函数,称之为分类交叉熵函数。

训练

我们将用梯度下降法来训练我们的神经网络,并通过反向传播法来计算所需的偏导数。训练过程主要有以下几个步骤:

1. 初始化参数(即权重量和偏差量)

2. 重复以下过程,直到收敛:

通过网络传播当前输入的批次大小,并计算所有隐藏和输出单元的激活值和输出值。

针对每个参数计算其对损失函数的偏导数

更新参数

前向传播过程

首先,我们计算网络中每个单元的激活值和输出值。为了加速这个过程的实现,我们不会单独为每个输入样本执行此操作,而是通过矢量化对所有样本一次性进行处理。其中:

A h 表示对所有训练样本激活隐层单元的矩阵

O h 表示对所有训练样本输出隐层单位的矩阵

隐层神经元将使用 tanh 函数作为其激活函数:

用Python实现机器学习算法

输出层神经元将使用 sigmoid 函数作为激活函数:

用Python实现机器学习算法

激活值和输出值计算如下(·表示点乘):

用Python实现机器学习算法

反向传播过程

为了计算权重向量的更新值,我们需要计算每个神经元对损失函数的偏导数。这里不会给出这些公式的推导,你会在其他网站上找到很多更好的解释。

对于输出神经元,梯度计算如下(矩阵符号):

用Python实现机器学习算法

对于输入和隐层的权重矩阵,梯度计算如下:

用Python实现机器学习算法

权重更新

用Python实现机器学习算法

In [3]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import make_circles

from sklearn.model_selection import train_test_split

np.random.seed(123)

% matplotlib inline

数据集

In [4]:

X, y = make_circles(n_samples=1000, factor=0.5, noise=.1)

fig = plt.figure(figsize=(8,6))

plt.scatter(X[:,0], X[:,1], c=y)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.title("Dataset")

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.show()

用Python实现机器学习算法

In [5]:

# reshape targets to get column vector with shape (n_samples, 1)

y_true = y[:, np.newaxis]

# Split the data into a training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y_true)

print(f'Shape X_train: {X_train.shape}')

print(f'Shape y_train: {y_train.shape}')

print(f'Shape X_test: {X_test.shape}')

print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1)

Shape X_test: (250, 2)

Shape y_test: (250, 1)

Neural Network Class

class NeuralNet():

def __init__(self, n_inputs, n_outputs, n_hidden):

self.n_inputs = n_inputs

self.n_outputs = n_outputs

self.hidden = n_hidden

# Initialize weight matrices and bias vectors

self.W_h = np.random.randn(self.n_inputs, self.hidden)

self.b_h = np.zeros((1, self.hidden))

self.W_o = np.random.randn(self.hidden, self.n_outputs)

self.b_o = np.zeros((1, self.n_outputs))

def sigmoid(self, a):

return 1 / (1 + np.exp(-a))

def forward_pass(self, X):

"""

Propagates the given input X forward through the net.

Returns:

A_h: matrix with activations of all hidden neurons for all input examples

O_h: matrix with outputs of all hidden neurons for all input examples

A_o: matrix with activations of all output neurons for all input examples

O_o: matrix with outputs of all output neurons for all input examples

"""

# Compute activations and outputs of hidden units

A_h = np.dot(X, self.W_h) + self.b_h

O_h = np.tanh(A_h)

# Compute activations and outputs of output units

A_o = np.dot(O_h, self.W_o) + self.b_o

O_o = self.sigmoid(A_o)

outputs = {

"A_h": A_h,

"A_o": A_o,

"O_h": O_h,

"O_o": O_o,

}

return outputs

def cost(self, y_true, y_predict, n_samples):

"""

Computes and returns the cost over all examples

"""

# same cost function as in logistic regression

cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict)))

cost = np.squeeze(cost)

assert isinstance(cost, float)

return cost

def backward_pass(self, X, Y, n_samples, outputs):

"""

Propagates the errors backward through the net.

Returns:

dW_h: partial derivatives of loss function w.r.t hidden weights

db_h: partial derivatives of loss function w.r.t hidden bias

dW_o: partial derivatives of loss function w.r.t output weights

db_o: partial derivatives of loss function w.r.t output bias

"""

dA_o = (outputs["O_o"] - Y)

dW_o = (1 / n_samples) * np.dot(outputs["O_h"].T, dA_o)

db_o = (1 / n_samples) * np.sum(dA_o)

dA_h = (np.dot(dA_o, self.W_o.T)) * (1 - np.power(outputs["O_h"], 2))

dW_h = (1 / n_samples) * np.dot(X.T, dA_h)

db_h = (1 / n_samples) * np.sum(dA_h)

gradients = {

"dW_o": dW_o,

"db_o": db_o,

"dW_h": dW_h,

"db_h": db_h,

}

return gradients

def update_weights(self, gradients, eta):

"""

Updates the model parameters using a fixed learning rate

"""

self.W_o = self.W_o - eta * gradients["dW_o"]

self.W_h = self.W_h - eta * gradients["dW_h"]

self.b_o = self.b_o - eta * gradients["db_o"]

self.b_h = self.b_h - eta * gradients["db_h"]

def train(self, X, y, n_iters=500, eta=0.3):

"""

Trains the neural net on the given input data

"""

n_samples, _ = X.shape

for i in range(n_iters):

outputs = self.forward_pass(X)

cost = self.cost(y, outputs["O_o"], n_samples=n_samples)

gradients = self.backward_pass(X, y, n_samples, outputs)

if i % 100 == 0:

print(f'Cost at iteration {i}: {np.round(cost, 4)}')

self.update_weights(gradients, eta)

def predict(self, X):

"""

Computes and returns network predictions for given dataset

"""

outputs = self.forward_pass(X)

y_pred = [1 if elem >= 0.5 else 0 for elem in outputs["O_o"]]

return np.array(y_pred)[:, np.newaxis]

初始化并训练神经网络

nn = NeuralNet(n_inputs=2, n_hidden=6, n_outputs=1)

print("Shape of weight matrices and bias vectors:")

print(f'W_h shape: {nn.W_h.shape}')

print(f'b_h shape: {nn.b_h.shape}')

print(f'W_o shape: {nn.W_o.shape}')

print(f'b_o shape: {nn.b_o.shape}')

print()

print("Training:")

nn.train(X_train, y_train, n_iters=2000, eta=0.7)

Shape of weight matrices and bias vectors:

W_h shape: (2, 6)

b_h shape: (1, 6)

W_o shape: (6, 1)

b_o shape: (1, 1)

Training:

Cost at iteration 0: 1.0872

Cost at iteration 100: 0.2723

Cost at iteration 200: 0.1712

Cost at iteration 300: 0.1386

Cost at iteration 400: 0.1208

Cost at iteration 500: 0.1084

Cost at iteration 600: 0.0986

Cost at iteration 700: 0.0907

Cost at iteration 800: 0.0841

Cost at iteration 900: 0.0785

Cost at iteration 1000: 0.0739

Cost at iteration 1100: 0.0699

Cost at iteration 1200: 0.0665

Cost at iteration 1300: 0.0635

Cost at iteration 1400: 0.061

Cost at iteration 1500: 0.0587

Cost at iteration 1600: 0.0566

Cost at iteration 1700: 0.0547

Cost at iteration 1800: 0.0531

Cost at iteration 1900: 0.0515

测试神经网络

n_test_samples, _ = X_test.shape

y_predict = nn.predict(X_test)

print(f"Classification accuracy on test set: {(np.sum(y_predict == y_test)/n_test_samples)*100} %")

Classification accuracy on test set: 98.4 %

可视化决策边界

X_temp, y_temp = make_circles(n_samples=60000, noise=.5)

y_predict_temp = nn.predict(X_temp)

y_predict_temp = np.ravel(y_predict_temp)

fig = plt.figure(figsize=(8,12))

ax = fig.add_subplot(2,1,1)

plt.scatter(X[:,0], X[:,1], c=y)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.title("Training and test set")

ax = fig.add_subplot(2,1,2)

plt.scatter(X_temp[:,0], X_temp[:,1], c=y_predict_temp)

plt.xlim([-1.5, 1.5])

plt.ylim([-1.5, 1.5])

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.title("Decision boundary")

Out[11]:Text(0.5,1,'Decision boundary')

用Python实现机器学习算法


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

C++语言的设计和演化

C++语言的设计和演化

[美] Bjarne Stroustrup / 裘宗燕 / 机械工业出版社 / 2002-1 / 48.00元

这本书是C++的设计者关于C++语言的最主要著作之一。作者综合性地论述了C++的历史和发展,C++中各种重要机制的本质意义和设计背景,这些机制的基本用途和使用方法,讨论了C++所适合的应用领域及其未来的发展前景。一起来看看 《C++语言的设计和演化》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具