内容简介:目地址:https://github.com/opencv/open_model_zooopen_model_zoo 预训练模型概览:有几种检测模型可以用于检测一系列最常见的目标。大多数网络都是基于 SSD 并提供了合理的准确率/速度权衡。这个列表有人脸、人物、汽车、自行车等目标的检测模型,其中包含一些检测相同类型的目标的网络(例如 face-detection-adas-0001 和 face-detection-retail-0004),因而你可以选择更高准确率/更广泛应用的网络,但同时存在更慢推理速
目地址:https://github.com/opencv/open_model_zoo
open_model_zoo 预训练模型概览:
目标检测模型
有几种检测模型可以用于检测一系列最常见的目标。大多数网络都是基于 SSD 并提供了合理的准确率/速度权衡。这个列表有人脸、人物、汽车、自行车等目标的检测模型,其中包含一些检测相同类型的目标的网络(例如 face-detection-adas-0001 和 face-detection-retail-0004),因而你可以选择更高准确率/更广泛应用的网络,但同时存在更慢推理速度的代价。
示例模型:face-detection-adas-0001
这个人脸检测器用于驾驶员状态检测和类似场景。该网络以 MobileNet 作为骨干,包含深度可分卷积来减少 3x3 卷积的计算量。
face-detection-adas-0001 人脸检测应用示例
face-detection-adas-0001 性能指标和规格
示例模型:person-detection-retail-0001
这个网络用于零售场景的行人检测,基于 hyper-feature+R-FCN 的骨干。
person-detection-retail-0001 人物检测应用示例
目标识别模型
目标识别模型被用于分类、回归和特征识别。可以在使用检测模型之后使用这些网络(例如,在人脸检测之后使用年龄/性别识别)。这个列表包含了年龄/性别、头部姿态、车牌号码、汽车属性、情绪、人脸关键点和人物属性等目标的识别模型。
示例模型:vehicle-attributes-recognition-barrier-0039
vehicle-attributes-recognition-barrier-0039 汽车属性识别应用示例
示例模型:person-attributes-recognition-crossroad-0031
person-attributes-recognition-crossroad-0031 人物属性识别应用示例
再识别模型
视频中进行目标的精确追踪是计算机视觉的常见应用(例如,人群计数)。以下网络可以用于这样的场景。输入一个人的图像并估计一个表征该人物外观的高维向量。这个向量可以用于进一步评估:对应同一个人的图像会有很接近的向量(基于 L2 距离指标)。以下列表提供了不同准确率/速度权衡的模型选择。列表中包含了人物和人脸再识别任务的模型。
示例模型:person-reidentification-retail-0031
person-reidentification-retail-0031ren'w 人物再识别应用示例
示例模型 face-reidentification-retail-0001
face-reidentification-retail-0001 人脸再识别应用示例
语义分割模型
语义分割是目标检测的扩展,其输出是目标的按类别区分的彩色掩码,而不是边框。这些网络比对应的检测模型要大得多,但可以对目标实现更精准的定位,并且不受目标的复杂形状所影响。列表中包含了街景和路面图像的语义分割模型。
示例模型:semantic-segmentation-adas-0001
semantic-segmentation-adas-0001 街景图像语义分割应用示例
模型下载:https://github.com/opencv/open_model_zoo/blob/2018/model_downloader/README.md
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- CVPR2019| 12篇CVPR论文开源代码(DeepFashion2/语义分割/人脸数据集基准等)
- 消息队列的消费语义和投递语义
- 剑桥构建视觉“语义大脑”:兼顾视觉信息和语义表示
- 新瓶装旧酒:语义网络,语义网,链接数据和知识图谱
- 超强语义分割算法!基于语义流的快速而准确的场景解析
- 语义分割领域开山之作:Google提出用神经网络搜索实现语义分割
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法Ⅰ~Ⅳ(C++实现):基础、数据结构、排序和搜索
Sedgewick / 高等教育出版社 / 2002-1 / 49.00元
本书通过C++实现方案以简洁、直接的方式对书中的算法和数据结构进行表述,并向学生提供在实际应用中验证这种方法的手段。 本书广泛地论述了与排序、搜索及相关应用有关的基本数据结构和算法。覆盖了数组、链表、串、树和其他基本数据结构,更多地强调抽象数据类型(ADT)、模块化程序设计、面向对象程序设计和C++类。本书包括排序、选择、优先队列ADT实现和符号表ADT(搜索)实现,配有帮助学生学习计算......一起来看看 《算法Ⅰ~Ⅳ(C++实现):基础、数据结构、排序和搜索》 这本书的介绍吧!