内容简介:关注下面的标签,发现更多相似文章
阅读 23
Hadoop集群从180到1500,携程大数据实践之路
内容来源: 2018 年 09 月 08 日,携程大数据平台技术总监张翼在“2018开源数据库论坛暨首届MariaDB中国用户者大会”进行《大数据平台在携程的实践》演讲分享。IT 大咖说作为独家视频合作方,经主办方和讲者审阅授权发布。
阅读字数: 3501 | 9分钟阅读
获取嘉宾演讲视频及PPT ,请点击:t.cn/EZtuxxP。
摘要
携程大家应该是蛮熟悉了吧,全国领先的OTA平台,旅游出行相关的都可以在上面一站式的完成,从酒店和机票的预订到火车票和汽车票,租车等,只要你能想到的和旅行相关的所有东西,在携程上都可以轻松实现。
携程大数据平台现状
平台规模
2015年我刚加入携程的时候,它的Hadoop集群规模还仅有约180台,现在已经发展到超过1500台,也就是8倍的提升。同时每天的数据增量在200T以上,调度任务数9万,运行的实例超过18万,其中80%的作业都运行在SparkSQL上。 这些调度任务转换成底层任务大概是MR Job 27万,Spark Job 9万。实时方面我们现在支持Jstorm和Spark-streaming,整个集群规模100以上。
平台架构
上图为我们的平台架构。底层是自动化运维和监控;中间层是一些开源的大数据基础架构,分为批量计算框架和实时框架,批量部分的底层基于hadoop,在此之上的ETO主要是用Hive和Spark,另外还有Presto和kylin;平台最上层被划分为4个系统,开发平台Zeus、查询平台ART、AI开发和管理平台,以及实时数据平台Muise。
如果单从界面上来看muise就像一个管理平台,用户可以通过它做一些提交。但其实我们还对Sprak进行了封装,并提供自己的library。这是为了限制并发资源的使用,让用户可以控制并发资源,同时能够触发外部报警。
系统 “走马观花”
数据开发平台总览
我们的开发平台分为5个系统,最主要的是调度系统Zeus。Datax数据传输系统用于给用户提供快捷配置的界面,用户操作完成后任务会被提交给Zeus。
主数据管理系统会展示表的信息并分析Job和Job间的依赖关系,以及通过解析 SQL 获取整体序列。
数据质量系统中配置了一些质量校验的规则,在调度系统运行完成之后会触发质量检验任务,如果优先级较高的质量校验任务失败就会阻断主要调度任务执行。最后是统一的权限绑定系统,这部分较为简单就不多做赘述了。
今年新进展
AI平台
虽然今年我们在底层上也做了很多尝试,但本次主要还是讲AI相关的基础设施上的一些工作。
上图为简化的生命周期图,从数据处理到特征工程、模型训练、模型更新这样的过程,一般是AI训练的固定流程。当模型训练好并达到所制定的指标和要求之后,接下来就是上线,这部分分为特征上线和服务上线。
我们期望通过图中所示的3个平台来支持AI研发的整个生命周期。以特征管理平台管理所有的特征,能够支持特征工程,快速生成一些训练集和测试集,能够以更为简便的方式上线特征。
模型引擎主要用来cover服务上线过程,目标是让用户只需要开发必要的数据抽取逻辑等,其他的部分都可以通过配置的方式来形成上线服务,该模块后续计划会和我们公司的发布系统打通。而针对AI训练部分,我们希望通过AI训练协作平台来帮助用户更好的完成任务。
现阶段特征平台基本上开发完成,并已上线使用,AI训练平台刚刚开发完成,尚处于部署和测试阶段,而模型引擎仍在开发过程中。 (截至演讲时间)
特征平台
特征平台的特征配置包括基础信息、数据源、计算逻辑、存储信息。我们的特征平台想做的是通过统一的SQL方式表示特征的计算逻辑,并以key value的形式存储。对于特征提取我们提供了对应API,用户可以通过特征ID和别名来获取相关特征。
特征提取完成后,用户会测试特征上线过程,平台为此提供了随机生成离线和实时任务的能力。离线任务主要是在Zeus的基础上增加一些传输作业。实时方面则会生成blink任务 ,由Kafka读取数据并处理后放到Spark上。
模型Engine
第一期的模型Engine会提供模型服务的SOA框架,其中包含自动转换的Input Convertor、Out Convertor。
模型服务的数据一般分为两种,通过服务直接输入的数据或者放在Aerospike上的特征。用户要完成的是前面的transformer,做的更多的是根据输入的配置从Aerospike上获取特征,然后拼接在一起,再经过处理得到结果。后面的transformer基本上和训练的东西一样,只要通过配置的方式加载进来就可以了。
整个SOA框架由模型引擎管理系统负责管理,最后和我们的发布系统Tars集成发布到模型服务集群中。
大数据平台建设经验分享
选型原则
技术选型主要受需求成本、技术趋势、团队能力这3点所约束。前两点相信大家都有考虑到,不过我要强调的是团队能力也非常重要,它并非一种静态的要求,而是动态的过程,需要领导者培养团队各方面能力以适应不断出现的新技术。
就拿转向SparkSQL为例。不同于其他大厂早就用到了SparkSQL,我们去年年末才开始从Hive转到SparkSQL。一方面是因为SparkSQL在2.2之后解决了很多问题,稳定性上已经达到了我们的要求;另一方面是我们自身的条件也已成熟,团队中有一两位同学已经可以深入到Spark源码上解决问题。正是基于这种条件,我们才决定启动全面Hive转Spark的过程,这也是为什么说团队能力也很重要的原因。
案例 - 数据分析基础设施选型
对于数据分析基础设施选型我们首先面临的问题是,选择自建还是使用云服务,就我个人来看对于小规模没有特殊需求的数据分析,云服务是不错的选择。
其次是是否要用到Hadoop,这个主要看数据量及其增长情况,量不大的时候可以直接用数据库应对,要用Hadoop的话,现在一般采取HDFS加Spark的方式,数据存储格式用Parquet、Carbondata、ORC等。
另外还要考虑是否需要实时分析数据,目前这方面都是用的Spark-Streaming或者Flink。最后如果对数据交互查询的速度要求不高,用Spark就够了,否则推荐使用Presto、kylin、ClickHouse。
如何“拥抱”新技术
有效和有限的分散——是美国历史上最成功的基金经理彼得林奇的投资原则之一。它的做法是以90%的资金重仓预先看好的股票,剩下的10%分散到多支股票上,并观察他们的趋势,然后将后续趋势较好的股票升级到重仓池中。
技术的投入其实也适用于这个原则。团队中大部分的资源应该先放在主要使用的技术上,对底层的系统来说要能够做到“代码级”维护。少部分的资源可以放在多种新技术或是平台的“预备”/ POC上,如果靠谱,可以开始用在低优先级的系统或项目上,最后也许会变成主要使用的技术。
“成长的烦恼”有什么
平台本身的增长肯定会给底层的技术人员带来一定的压力,主要体现在3个方面。
第一是在运维方面,系统规模的不断扩大,会使得运维系统越发复杂,并且种类也不断增多。
第二是开源系统的问题,开源是把“双刃剑”,它能帮你快速构建起相应的系统,但随着系统规模的增大,问题也会不断暴露出来。
第三是服务和支持方面,用户不断增长的“物质文化需求”与“短小精悍”团队之间的矛盾,临时的支持与问题排查工作也会变多。
解决运维问题最重要是在于自动化,而自动化的关键的有2个,一是要保证测试环境和线上配置一致,二是覆盖范围尽可能全,特别是客户端部分也要涉及到。监控方面比较简单,主要是监控重要指标并建立自动恢复的机制。
对于开源系统的使用,我认为还是要在思想上做好长期斗争的准备。最关键的是要建立“代码级”的维护能力,比如招聘时选择对技术有浓厚兴趣,能够沉下心来的同学;在底层团队通过各种层次的分享建立学习,研究的氛围。
服务和支持问题的应对策略可以分为几点,包括从使用者的角度去设计产品,关注产品的易用性;控制推广的节奏;完善文档以及常见问题FAQ;增强BU数据开发的工程技术能力;短期的全员客服等。
(文中相关数据,以演讲当时为准,可能和实际情况有所差异)
以上为今天的分享内容,谢谢大家!
关注下面的标签,发现更多相似文章
加入掘金和开发者一起成长。发送简历到 hr@xitu.io,期待你的加入!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 简述大数据实时处理框架
- 恒丰银行——大数据实时流处理平台
- 中国“新三板”——通过大数据实现股转系统监控
- Twitter开源大数据实时分析系统Heron:Heron架构
- Twitter发布新的大数据实时分析系统Heron
- Twitter开源大数据实时分析系统Heron:Heron架构
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。