Ceph Bluestore RocksDB Analyse

栏目: 数据库 · 发布时间: 6年前

内容简介:对于Ceph全新的存储引擎BlueStore来说,RocksDB的意义很大,它存储了BlueStore相关的元数据信息,对它的理解有助于更好的理解BlueStore的实现,分析之后遇到的问题;BlueStore的架构图如下,还是被广泛使用的一张:

对于Ceph全新的存储引擎BlueStore来说,RocksDB的意义很大,它存储了BlueStore相关的元数据信息,对它的理解有助于更好的理解BlueStore的实现,分析之后遇到的问题;

BlueStore架构

BlueStore的架构图如下,还是被广泛使用的一张:

Ceph Bluestore RocksDB Analyse

如上图所示,BlueStore的几个关键组件中,RocksDB对接了BlueStore的metadata信息,本文抛开别的组件,详细描述RocksDB在这里存储的信息以及其实现;

BlueStore结构体定义

Ceph里BlueStore的定义和主要数据成员如下:

class BlueStore : public ObjectStore, public md_config_obs_t {
...
private:
    BlueFS *bluefs = nullptr;
    unsigned bluefs_shared_bdev = 0;  ///< which bluefs bdev we are sharing
    bool bluefs_single_shared_device = true;
    utime_t bluefs_last_balance;

    KeyValueDB *db = nullptr;
    BlockDevice *bdev = nullptr;
    std::string freelist_type;
    FreelistManager *fm = nullptr;
    Allocator *alloc = nullptr;
    uuid_d fsid;
    int path_fd = -1;  ///< open handle to $path
    int fsid_fd = -1;  ///< open handle (locked) to $path/fsid
    bool mounted = false;

    vector<Cache*> cache_shards;

    std::mutex osr_lock;              ///< protect osd_set
    std::set<OpSequencerRef> osr_set; ///< set of all OpSequencers
...
};

几个关键的数据成员如下:

1) BlueFS

定义: BlueFS *bluefs = nullptr;

支持RocksDB的定制FS,只实现了RocksEnv需要的API接口;

代码里在_open_db()里对其初始化:

int BlueStore::_open_db(bool create)
{
    rocksdb::Env *env = NULL;
    if (do_bluefs) {
        bluefs = new BlueFS(cct);
    }
}

2) RocksDB

定义: KeyValueDB *db = nullptr;

在BlueStore的元数据和OMap都通过DB存储,这里使用的是RocksDB,它的初始化也是在_open_db()函数中:

int BlueStore::_open_db(bool create)
{
    // 获取kv的后端设备
    string kv_backend;
    if (create) {
        kv_backend = cct->_conf->bluestore_kvbackend;
    } else {
        r = read_meta("kv_backend", &kv_backend);
    }
    
    // mkfs也会调用这里,create时候根据配置做bluefs的创建
    if (create) {
        do_bluefs = cct->_conf->bluestore_bluefs;
    } else {
        string s;
        r = read_meta("bluefs", &s);
    }

    rocksdb::Env *env = NULL;
    // 创建bluefs
    if (do_bluefs) {
        bluefs = new BlueFS(cct);
        bfn = path + "/block.db";
        if (::stat(bfn.c_str(), &st) == 0) {
            r = bluefs->add_block_device(BlueFS::BDEV_DB, bfn);
            if (bluefs->bdev_support_label(BlueFS::BDEV_DB)) {
                r = _check_or_set_bdev_label(
                        bfn,
                        bluefs->get_block_device_size(BlueFS::BDEV_DB),
                        "bluefs db", create);
            }
            if (create) {
                bluefs->add_block_extent(
                    BlueFS::BDEV_DB,
                    SUPER_RESERVED,
                    bluefs->get_block_device_size(BlueFS::BDEV_DB) - SUPER_RESERVED);
            }
            bluefs_shared_bdev = BlueFS::BDEV_SLOW;
            bluefs_single_shared_device = false;
        } else {
            if (::lstat(bfn.c_str(), &st) == -1) {
                bluefs_shared_bdev = BlueFS::BDEV_DB;
            }
        }
        // shared device
        bfn = path + "/block";
        r = bluefs->add_block_device(bluefs_shared_bdev, bfn);
        
        bfn = path + "/block.wal";
        if (::stat(bfn.c_str(), &st) == 0) {
            r = bluefs->add_block_device(BlueFS::BDEV_WAL, bfn);
            if (bluefs->bdev_support_label(BlueFS::BDEV_WAL)) {
                r = _check_or_set_bdev_label(
                        bfn,
                        bluefs->get_block_device_size(BlueFS::BDEV_WAL),
                        "bluefs wal", create);
            }
            if (create) {
                bluefs->add_block_extent(
                    BlueFS::BDEV_WAL, BDEV_LABEL_BLOCK_SIZE,
                    bluefs->get_block_device_size(BlueFS::BDEV_WAL) -
                    BDEV_LABEL_BLOCK_SIZE);
            }
            cct->_conf->set_val("rocksdb_separate_wal_dir", "true");
            bluefs_single_shared_device = false;
        }
    }
    
    // 创建RocksDB
    db = KeyValueDB::create(cct,
                            kv_backend,
                            fn,
                            static_cast<void*>(env));
    
    FreelistManager::setup_merge_operators(db);
    db->set_merge_operator(PREFIX_STAT, merge_op);

    db->set_cache_size(cache_size * cache_kv_ratio);

    if (kv_backend == "rocksdb")
        options = cct->_conf->bluestore_rocksdb_options;
    db->init(options);
    if (create)
        r = db->create_and_open(err);
    else
        r = db->open(err);
}

3) BlockDevice

定义: BlockDevice *bdev = nullptr;

底层存储BlueStore Data / db / wal的块设备,有如下几种:

  1. KernelDevice
  2. NVMEDevice
  3. PMEMDevice

代码中对其初始化如下:

int BlueStore::_open_bdev(bool create)
{
    string p = path + "/block";
    bdev = BlockDevice::create(cct, p, aio_cb, static_cast<void*>(this));
    int r = bdev->open(p);
     
    if (bdev->supported_bdev_label()) {
        r = _check_or_set_bdev_label(p, bdev->get_size(), "main", create);
    }
     
    // initialize global block parameters
    block_size = bdev->get_block_size();
    block_mask = ~(block_size - 1);
    block_size_order = ctz(block_size);
     
    r = _set_cache_sizes();
    return 0;
}

4) FreelistManager

定义: FreelistManager *fm = nullptr;

管理BlueStore里空闲blob的;

默认使用的是:BitmapFreelistManager

int BlueStore::_open_fm(bool create){
    fm = FreelistManager::create(cct, freelist_type, db, PREFIX_ALLOC);
    int r = fm->init(bdev->get_size());
}

5) Allocator

定义: Allocator *alloc = nullptr;

BlueStore的blob分配器,支持如下几种:

  • BitmapAllocator
  • StupidAllocator

默认使用的是 StupidAllocator;

6) 总结:BlueStore的mount过程

在BlueStore的 mount过程中,会调用各个函数来初始化其使用的各个组件,顺序如下:

int BlueStore::_mount(bool kv_only)
{
    int r = read_meta("type", &type);
    if (type != "bluestore") {
        return -EIO;
    }
    ...
    int r = _open_path();
    r = _open_fsid(false);
    r = _read_fsid(&fsid);
    r = _lock_fsid();
    r = _open_bdev(false);
    r = _open_db(false);
 
    if (kv_only)
        return 0;
 
    r = _open_super_meta();
    r = _open_fm(false);
    r = _open_alloc();
    r = _open_collections();
    r = _reload_logger();
 
    if (bluefs) {
        r = _reconcile_bluefs_freespace();
    }
 
    _kv_start();
    r = _deferred_replay();
    mempool_thread.init();
    mounted = true;
    return 0;
}

RocksDB的定义

RocksDB的定义如下,基于KeyValueDB实现接口:

/**
 * Uses RocksDB to implement the KeyValueDB interface
 */
class RocksDBStore : public KeyValueDB {
...
    string path;
    void *priv;
    rocksdb::DB *db;
    rocksdb::Env *env;
    std::shared_ptr<rocksdb::Statistics> dbstats;
    rocksdb::BlockBasedTableOptions bbt_opts;
    string options_str;
 
    uint64_t cache_size = 0;
...
 
    // manage async compactions
    Mutex compact_queue_lock;
    Cond compact_queue_cond;
    list< pair<string,string> > compact_queue;
    bool compact_queue_stop;
    class CompactThread : public Thread {
        RocksDBStore *db;
    public:
        explicit CompactThread(RocksDBStore *d) : db(d) {}
        void *entry() override {
            db->compact_thread_entry();
            return NULL;
        }
        friend class RocksDBStore;
    } compact_thread;
     
...
     
    struct  RocksWBHandler: public rocksdb::WriteBatch::Handler {
        std::string seen ;
        int num_seen = 0;
    };
 
    class RocksDBTransactionImpl : public KeyValueDB::TransactionImpl {
    public:
        rocksdb::WriteBatch bat;
        RocksDBStore *db;
     };
    
    // DB Iterator的具体实现,比较重要
    class RocksDBWholeSpaceIteratorImpl :
        public KeyValueDB::WholeSpaceIteratorImpl {
    protected:
        rocksdb::Iterator *dbiter;
    public:
        explicit RocksDBWholeSpaceIteratorImpl(rocksdb::Iterator *iter) :
            dbiter(iter) { }
        //virtual ~RocksDBWholeSpaceIteratorImpl() { }
        ~RocksDBWholeSpaceIteratorImpl() override;
 
        int seek_to_first() override;
        int seek_to_first(const string &prefix) override;
        int seek_to_last() override;
        int seek_to_last(const string &prefix) override;
        int upper_bound(const string &prefix, const string &after) override;
        int lower_bound(const string &prefix, const string &to) override;
        bool valid() override;
        int next() override;
        int prev() override;
        string key() override;
        pair<string,string> raw_key() override;
        bool raw_key_is_prefixed(const string &prefix) override;
        bufferlist value() override;
        bufferptr value_as_ptr() override;
        int status() override;
        size_t key_size() override;
        size_t value_size() override;
    };
...
};

基类 KeyValueDB 的定义如下,只罗列了几个关键的基类定义:

/**
 * Defines virtual interface to be implemented by key value store
 *
 * Kyoto Cabinet or LevelDB should implement this
 */
class KeyValueDB {
public:
    class TransactionImpl {
        ...
    };
    typedef ceph::shared_ptr< TransactionImpl > Transaction;
 
    class WholeSpaceIteratorImpl {
        ...
    };
    typedef ceph::shared_ptr< WholeSpaceIteratorImpl > WholeSpaceIterator;
     
    class IteratorImpl : public GenericIteratorImpl {
        const std::string prefix;
        WholeSpaceIterator generic_iter;
        ...
        int seek_to_first() override {
            return generic_iter->seek_to_first(prefix);
        }
        int seek_to_last() {
            return generic_iter->seek_to_last(prefix);
        }
        int upper_bound(const std::string &after) override {
            return generic_iter->upper_bound(prefix, after);
        }
        int lower_bound(const std::string &to) override {
            return generic_iter->lower_bound(prefix, to);
        }
        bool valid() override {
            if (!generic_iter->valid())
                return false;
            return generic_iter->raw_key_is_prefixed(prefix);
        }
    };
    typedef ceph::shared_ptr< IteratorImpl > Iterator;
     
    WholeSpaceIterator get_iterator() {
        return _get_iterator();
    }
 
    Iterator get_iterator(const std::string &prefix) {
        return std::make_shared<IteratorImpl>(prefix, get_iterator());
    }
};

在代码中,使用RocksDB的常用方法如下:

KeyValueDB::Iterator it;
it = db->get_iterator(PREFIX_OBJ);       // 设置key的前缀
it->lower_bound(key); / it->upper_bound(key);    // 找到对应key的iterator位置
while (it->valid()) {            // 检查iterator是否有效
    ...
    it->key() / it->value();;    // 获取iterator对应的key或value
    it->next();                  // 获取下一个iterator位置
}

RocksDB里KV分类

BlueStore里所有的kv数据都可以存储在RocksDB里,实现中通过数据的前缀分类,如下:

// kv store prefixes
const string PREFIX_SUPER = "S";   // field -> value
const string PREFIX_STAT = "T";    // field -> value(int64 array)
const string PREFIX_COLL = "C";    // collection name -> cnode_t
const string PREFIX_OBJ = "O";     // object name -> onode_t
const string PREFIX_OMAP = "M";    // u64 + keyname -> value
const string PREFIX_DEFERRED = "L";  // id -> deferred_transaction_t
const string PREFIX_ALLOC = "B";   // u64 offset -> u64 length (freelist)
const string PREFIX_SHARED_BLOB = "X"; // u64 offset -> shared_blob_t

下面针对每一类前缀做详细介绍:

1) PREFIX_SUPER

BlueStore的超级块信息,里面BlueStore自身的元数据信息,比如:

S   blobid_max
S   bluefs_extents
S   freelist_type
S   min_alloc_size
S   min_compat_ondisk_format
S   nid_max
S   ondisk_format

2) PREFIX_STAT

bluestore_statfs 信息

class BlueStore : public ObjectStore,
    public md_config_obs_t {
...
    struct volatile_statfs {
        enum {
            STATFS_ALLOCATED = 0,
            STATFS_STORED,
            STATFS_COMPRESSED_ORIGINAL,
            STATFS_COMPRESSED,
            STATFS_COMPRESSED_ALLOCATED,
            STATFS_LAST
        };
        int64_t values[STATFS_LAST];
...
};
 
 
设置地方:
void BlueStore::_txc_update_store_statfs(TransContext *txc)
{
    if (txc->statfs_delta.is_empty())
        return;
...
    {
        std::lock_guard<std::mutex> l(vstatfs_lock);
        vstatfs += txc->statfs_delta;
    }
 
    bufferlist bl;
    txc->statfs_delta.encode(bl);
 
    txc->t->merge(PREFIX_STAT, "bluestore_statfs", bl);
    txc->statfs_delta.reset();
}

3) PREFIX_COLL

Collection的元数据信息,Collection对应逻辑上的PG,每个ObjectStore都会实现自己的Collection;

BlueStore存储一个PG,就会存储一个Collection的kv到RocksDB;

class BlueStore : public ObjectStore,
    public md_config_obs_t {
    ...
    typedef boost::intrusive_ptr<Collection> CollectionRef;

    struct Collection : public CollectionImpl {
        BlueStore *store;
        Cache *cache;       ///< our cache shard
        coll_t cid;
        bluestore_cnode_t cnode;
        RWLock lock;

        bool exists;

        SharedBlobSet shared_blob_set;      ///< open SharedBlobs

        // cache onodes on a per-collection basis to avoid lock
        // contention.
        OnodeSpace onode_map;

        //pool options
        pool_opts_t pool_opts;
        ...
    };
}

4) PREFIX_OBJ

Object的元数据信息,对于存在BlueStore里的任何一个Object,都会把其的struct Onode信息(+其他)作为value写入RocksDB;

需要访问该Object时,先查询RocksDB,构造出其内存数据结构Onode,再访问之;

class BlueStore : public ObjectStore,
    public md_config_obs_t {
    ...  
    /// an in-memory object
    struct Onode {
        std::atomic_int nref;  ///< reference count
        Collection *c;

        ghobject_t oid;

        /// key under PREFIX_OBJ where we are stored
        mempool::bluestore_cache_other::string key;

        boost::intrusive::list_member_hook<> lru_item;

        bluestore_onode_t onode;  ///< metadata stored as value in kv store
        bool exists;              ///< true if object logically exists

        ExtentMap extent_map;
        ...
    };
    typedef boost::intrusive_ptr<Onode> OnodeRef;
}

5) PREFIX_OMAP

Object的OMap信息,之前存储在Object的attr和Map信息,都通过PREFIX_OMAP前缀保存在RocksDB里;

6) PREFIX_DEFERRED

BlueStore Deferred transaction的信息,对应数据结构定义如下:

/// writeahead-logged transaction
struct bluestore_deferred_transaction_t {
    uint64_t seq = 0;
    list<bluestore_deferred_op_t> ops;
    interval_set<uint64_t> released;  ///< allocations to release after tx
 
    bluestore_deferred_transaction_t() : seq(0) {}
 
    DENC(bluestore_deferred_transaction_t, v, p) {
        DENC_START(1, 1, p);
        denc(v.seq, p);
        denc(v.ops, p);
        denc(v.released, p);
        DENC_FINISH(p);
    }
    void dump(Formatter *f) const;
    static void generate_test_instances(list<bluestore_deferred_transaction_t*>& o);
};
WRITE_CLASS_DENC(bluestore_deferred_transaction_t)

7) PREFIX_ALLOC

FreelistManager相关,默认使用BitmapFreelistManager;

B       blocks
B       blocks_per_key
B       bytes_per_block
B       size

8) PREFIX_SHARED_BLOB

Shared blob的元数据信息,因为blob的size比较大,有可能上面的多个extent maps映射下来;

RocksDB tool

ceph提供了一个命令来获取一个kvstore里的数据:ceph-kvstore-tool,help如下:

root@ceph6:~# ceph-kvstore-tool -h
Usage: ceph-kvstore-tool <leveldb|rocksdb|bluestore-kv> <store path> command [args...]
 
Commands:
  list [prefix]
  list-crc [prefix]
  exists <prefix> [key]
  get <prefix> <key> [out <file>]
  crc <prefix> <key>
  get-size [<prefix> <key>]
  set <prefix> <key> [ver <N>|in <file>]
  rm <prefix> <key>
  rm-prefix <prefix>
  store-copy <path> [num-keys-per-tx] [leveldb|rocksdb|...]
  store-crc <path>
  compact
  compact-prefix <prefix>
  compact-range <prefix> <start> <end>
  repair

使用示例:

root@ceph6:~# systemctl stop ceph-osd@20.service
 
 
root@ceph6:~# ceph-kvstore-tool bluestore-kv /var/lib/ceph/osd/ceph-20/ list B > list-B
2018-09-21 11:43:42.679 7f4ec14deb80  1 bluestore(/var/lib/ceph/osd/ceph-20/) _mount path /var/lib/ceph/osd/ceph-20/
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev create path /var/lib/ceph/osd/ceph-20//block type kernel
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev(0x55ddf4e58000 /var/lib/ceph/osd/ceph-20//block) open path /var/lib/ceph/osd/ceph-20//block
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev(0x55ddf4e58000 /var/lib/ceph/osd/ceph-20//block) open size 4000783007744 (0x3a381400000, 3.6 TiB) block_size 4096 (4 KiB) rotational
2018-09-21 11:43:42.679 7f4ec14deb80  1 bluestore(/var/lib/ceph/osd/ceph-20/) _set_cache_sizes cache_size 1073741824 meta 0.5 kv 0.5 data 0
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev create path /var/lib/ceph/osd/ceph-20//block.db type kernel
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev(0x55ddf4e58380 /var/lib/ceph/osd/ceph-20//block.db) open path /var/lib/ceph/osd/ceph-20//block.db
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev(0x55ddf4e58380 /var/lib/ceph/osd/ceph-20//block.db) open size 3221225472 (0xc0000000, 3 GiB) block_size 4096 (4 KiB) non-rotational
2018-09-21 11:43:42.679 7f4ec14deb80  1 bluefs add_block_device bdev 1 path /var/lib/ceph/osd/ceph-20//block.db size 3 GiB
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev create path /var/lib/ceph/osd/ceph-20//block type kernel
2018-09-21 11:43:42.679 7f4ec14deb80  1 bdev(0x55ddf4e58700 /var/lib/ceph/osd/ceph-20//block) open path /var/lib/ceph/osd/ceph-20//block
2018-09-21 11:43:42.683 7f4ec14deb80  1 bdev(0x55ddf4e58700 /var/lib/ceph/osd/ceph-20//block) open size 4000783007744 (0x3a381400000, 3.6 TiB) block_size 4096 (4 KiB) rotational
2018-09-21 11:43:42.683 7f4ec14deb80  1 bluefs add_block_device bdev 2 path /var/lib/ceph/osd/ceph-20//block size 3.6 TiB
2018-09-21 11:43:42.683 7f4ec14deb80  1 bdev create path /var/lib/ceph/osd/ceph-20//block.wal type kernel
2018-09-21 11:43:42.683 7f4ec14deb80  1 bdev(0x55ddf4e58a80 /var/lib/ceph/osd/ceph-20//block.wal) open path /var/lib/ceph/osd/ceph-20//block.wal
2018-09-21 11:43:42.683 7f4ec14deb80  1 bdev(0x55ddf4e58a80 /var/lib/ceph/osd/ceph-20//block.wal) open size 3221225472 (0xc0000000, 3 GiB) block_size 4096 (4 KiB) non-rotational
2018-09-21 11:43:42.683 7f4ec14deb80  1 bluefs add_block_device bdev 0 path /var/lib/ceph/osd/ceph-20//block.wal size 3 GiB
2018-09-21 11:43:42.683 7f4ec14deb80  1 bluefs mount
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option compaction_readahead_size = 2097152
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option compression = kNoCompression
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option max_write_buffer_number = 4
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option min_write_buffer_number_to_merge = 1
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option recycle_log_file_num = 4
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option writable_file_max_buffer_size = 0
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option write_buffer_size = 268435456
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option compaction_readahead_size = 2097152
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option compression = kNoCompression
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option max_write_buffer_number = 4
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option min_write_buffer_number_to_merge = 1
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option recycle_log_file_num = 4
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option writable_file_max_buffer_size = 0
2018-09-21 11:43:42.691 7f4ec14deb80  0  set rocksdb option write_buffer_size = 268435456
2018-09-21 11:43:42.691 7f4ec14deb80  1 rocksdb: do_open column families: [default]
2018-09-21 11:43:42.699 7f4ec14deb80  1 bluestore(/var/lib/ceph/osd/ceph-20/) _open_db opened rocksdb path db options compression=kNoCompression,max_write_buffer_number=4,min_write_buffer_number_to_merge=1,recycle_log_file_num=4,write_buffer_size=268435456,writable_file_max_buffer_size=0,compaction_readahead_size=2097152
2018-09-21 11:43:42.703 7f4ec14deb80  1 bluestore(/var/lib/ceph/osd/ceph-20/) umount
2018-09-21 11:43:42.703 7f4ec14deb80  1 bluefs umount
2018-09-21 11:43:42.703 7f4ec14deb80  1 stupidalloc 0x0x55ddf4a92a70 shutdown
2018-09-21 11:43:42.703 7f4ec14deb80  1 stupidalloc 0x0x55ddf4a92ae0 shutdown
2018-09-21 11:43:42.703 7f4ec14deb80  1 stupidalloc 0x0x55ddf4a92b50 shutdown
2018-09-21 11:43:42.703 7f4ec14deb80  1 bdev(0x55ddf4e58a80 /var/lib/ceph/osd/ceph-20//block.wal) close
2018-09-21 11:43:42.991 7f4ec14deb80  1 bdev(0x55ddf4e58380 /var/lib/ceph/osd/ceph-20//block.db) close
2018-09-21 11:43:43.227 7f4ec14deb80  1 bdev(0x55ddf4e58700 /var/lib/ceph/osd/ceph-20//block) close
2018-09-21 11:43:43.463 7f4ec14deb80  1 bdev(0x55ddf4e58000 /var/lib/ceph/osd/ceph-20//block) close
 
 
root@ceph6:~# systemctl start ceph-osd@20.service

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

精通Java并发编程(第2版)

精通Java并发编程(第2版)

[西] 哈维尔·费尔南德斯·冈萨雷斯 / 唐富年 / 人民邮电出版社 / 2018-10 / 89.00元

Java 提供了一套非常强大的并发API,可以轻松实现任何类型的并发应用程序。本书讲述Java 并发API 最重要的元素,包括执行器框架、Phaser 类、Fork/Join 框架、流API、并发数据结构、同步机制,并展示如何在实际开发中使用它们。此外,本书还介绍了设计并发应用程序的方法论、设计模式、实现良好并发应用程序的提示和技巧、测试并发应用程序的工具和方法,以及如何使用面向Java 虚拟机的......一起来看看 《精通Java并发编程(第2版)》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具