SQLAlchemy in 空列表问题分析
栏目: 数据库 · PostgreSQL · 发布时间: 6年前
内容简介:SQLAlchemy in 空列表问题有model这里 account_ids 如果为空,执行查询会有如下警告:
SQLAlchemy in 空列表问题
问题场景
有model Account
,SQLAlchemy 查询语句如下:
query = Account.query.filter(Account.id.in_(account_ids)).order_by(Account.date_created.desc())
这里 account_ids 如果为空,执行查询会有如下警告:
/usr/local/lib/python2.7/site-packages/sqlalchemy/sql/default_comparator.py:35: SAWarning: The IN-predicate on "account.id" was invoked with an empty sequence. This results in a contradiction, which nonetheless can be expensive to evaluate. Consider alternative strategies for improved performance. return o[0](self, self.expr, op, *(other + o[1:]), **kwargs)
这里的意思是使用一个空的列表会花费较长的时间,需要优化以提高性能。
为什么会有这个提示呢?一个空列表为什么会影响性能呢?
首先打印 query 可得到如下 sql 语句:
SELECT * // 字段使用 “*” 代替 FROM account WHERE account.id != account.id ORDER BY account.date_created DESC
会发现生成的语句中过滤条件是 WHERE account.id != account.id
,使用 PostgreSQL Explain ANALYZE 命令
,
- EXPLAIN:显示PostgreSQL计划程序为提供的语句生成的执行计划。
- ANALYZE:收集有关数据库中表的内容的统计信息。
分析查询成本结果如下:
postgres=> EXPLAIN ANALYZE SELECT * FROM account WHERE account.id != account.id ORDER BY account.date_created DESC; QUERY PLAN ---------------------------------------------------------------------------------- Sort (cost=797159.14..808338.40 rows=4471702 width=29) (actual time=574.002..574.002 rows=0 loops=1) Sort Key: date_created DESC Sort Method: quicksort Memory: 25kB -> Seq Scan on account (cost=0.00..89223.16 rows=4471702 width=29) (actual time=573.991..573.991 rows=0 loops=1) Filter: (id <> id) Rows Removed by Filter: 4494173 Planning time: 0.162 ms Execution time: 574.052 ms (8 rows)
先看Postgresql提供的语句生成的执行计划,通过结果可以看到,虽然返回值为空,但是查询成本却还是特别高,执行计划部分几乎所有的时间都耗费在 排序 上,但是和执行时间相比,查询计划的时间可以忽略不计。(结果是先遍历全表,查出所有数据,然后再使用 Filter: (id <> id)
把所有数据过滤。)
按照这个思路,有两种查询方案:
- 如果 account_ids 为空,那么直接返回空列表不进行任何操作,查询语句变为:
if account_ids: query = Account.query.filter(Account.id.in_(account_ids)).order_by(Account.date_created.desc())
- 如果 account_ids 为空,那么过滤方式,查询语句变为:
query = Account.query if account_ids: query = query.filter(Account.id.in_(account_ids)) else: query = query.filter(False) query = query.order_by(Account.date_created.desc())
如果 account_ids 为空,此时生成的 SQL 语句结果为:
SELECT * FROM account WHERE 0 = 1 ORDER BY account.date_created DESC
分析结果为:
postgres=> EXPLAIN ANALYZE SELECT * FROM account WHERE 0 = 1 ORDER BY account.date_created DESC; QUERY PLAN --------------------------------------------------------------------------------------------------- Sort (cost=77987.74..77987.75 rows=1 width=29) (actual time=0.011..0.011 rows=0 loops=1) Sort Key: date_created DESC Sort Method: quicksort Memory: 25kB -> Result (cost=0.00..77987.73 rows=1 width=29) (actual time=0.001..0.001 rows=0 loops=1) One-Time Filter: false -> Seq Scan on account (cost=0.00..77987.73 rows=1 width=29) (never executed) Planning time: 0.197 ms Execution time: 0.061 ms (8 rows)
可以看到,查询计划和执行时间都有大幅提高。
一个测试
如果只是去掉方案1排序,查看一下分析结果
使用 PostgreSQL Explain ANALYZE 命令
分析查询成本结果如下:
postgres=> EXPLAIN ANALYZE SELECT * FROM account WHERE account.id != account.id; QUERY PLAN ---------------------------------------------------------------------------- Seq Scan on account (cost=0.00..89223.16 rows=4471702 width=29) (actual time=550.999..550.999 rows=0 loops=1) Filter: (id <> id) Rows Removed by Filter: 4494173 Planning time: 0.134 ms Execution time: 551.041 ms
可以看到,时间和有排序时差别不大。
如何计算查询成本
执行一个分析,结果如下:
postgres=> explain select * from account where date_created ='2016-04-07 18:51:30.371495+08'; QUERY PLAN -------------------------------------------------------------------------------------- Seq Scan on account (cost=0.00..127716.33 rows=1 width=211) Filter: (date_created = '2016-04-07 18:51:30.371495+08'::timestamp with time zone) (2 rows)
EXPLAIN引用的数据是:
- 0.00 预计的启动开销(在输出扫描开始之前消耗的时间,比如在一个排序节点里做排续的时间)。
- 127716.33 预计的总开销。
- 1 预计的该规划节点输出的行数。
- 211 预计的该规划节点的行平均宽度(单位:字节)。
这里开销(cost)的计算单位是磁盘页面的存取数量,如1.0将表示一次顺序的磁盘页面读取。其中上层节点的开销将包括其所有子节点的开销。这里的输出行数(rows)并不是规划节点处理/扫描的行数,通常会更少一些。一般而言,顶层的行预计数量会更接近于查询实际返回的行数。 这里表示的就是在只有单 CPU 内核的情况下,评估成本是127716.33;
计算成本,Postgresql 首先看表的字节数大小
这里 account 表的大小为:
postgres=> select pg_relation_size('account'); pg_relation_size ------------------ 737673216 (1 row)
查看块的大小
Postgresql 会为每个要一次读取的快添加成本点,使用 show block_size
查看块的大小:
postgres=> show block_size; block_size ------------ 8192 (1 row)
计算块的个数
可以看到每个块的大小为8kb,那么可以计算从表从读取的顺序块成本值为:
blocks = pg_relation_size/block_size = 90048
90048
是account 表所占用块的数量。
查看每个块需要的成本
postgres=> show seq_page_cost; seq_page_cost --------------- 1 (1 row)
这里的意思是 Postgresql 为每个块分配一个成本点,也就是说上面的查询需要从90048个成本点。
处理每条数据 cpu 所需时间
- cpu_tuple_cost:处理每条记录的CPU开销(tuple:关系中的一行记录)
- cpu_operator_cost:操作符或函数带来的CPU开销。
postgres=> show cpu_operator_cost; cpu_operator_cost ------------------- 0.0025 (1 row) postgres=> show cpu_tuple_cost; cpu_tuple_cost ---------------- 0.01 (1 row)
计算
cost 计算公式为:
cost = 磁盘块个数 * 块成本(1) + 行数 * cpu_tuple_cost(系统参数值)+ 行数 * cpu_operator_cost
现在用所有值来计算explain 语句中得到的值:
number_of_records = 3013466 # account 表 count block_size = 8192 # block size in bytes pg_relation_size=737673216 blocks = pg_relation_size/block_size = 90048 seq_page_cost = 1 cpu_tuple_cost = 0.01 cpu_operator_cost = 0.0025 cost = blocks * seq_page_cost + number_of_records * cpu_tuple_cost + number_of_records * cpu_operator_cost
如何降低查询成本?
直接回答,使用索引。
postgres=> explain select * from account where id=20039; QUERY PLAN ---------------------------------------------------------------------------------------- Index Scan using account_pkey on account (cost=0.43..8.45 rows=1 width=211) Index Cond: (id = 20039) (2 rows)
通过这个查询可以看到,在使用有索引的字段查询时,查询成本显著降低。
索引扫描的计算比顺序扫描的计算要复杂一些。它由两个阶段组成。 PostgreSQL会考虑random_page_cost和cpu_index_tuple_cost 变量,并返回一个基于索引树的高度的值。
参考链接
- sqlalchemy-and-empty-in-clause
- PostgreSQL查询性能分析和优化
- PostgreSQL学习手册(性能提升技巧)
- PostgreSQL 查询成本模型
- PostgreSQL 查询计划时间的计算详解
最后,感谢女朋友支持和包容,比:heart:
也可以在公号输入以下关键字获取历史文章: 公号&小程序
| 设计模式
| 并发&协程
以上所述就是小编给大家介绍的《SQLAlchemy in 空列表问题分析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
马云现象的经济学分析:互联网经济的八个关键命题
胡晓鹏 / 上海社会科学院出版社 / 2016-11-1 / CNY 68.00
互联网经济的产生、发展与扩张,在冲击传统经济理论观点的同时,也彰显了自身理论体系的独特内核,并与那种立足于工业经济时代的经典理论发生显著分野。今天看来,“马云”们的成功是中国经济长期“重制造、轻服务,重产能、轻消费,重国有、轻民营”发展逻辑的结果。但互联网经济的发展却不应仅仅止步于商业技巧的翻新,还需要在理论上进行一番审慎的思考。对此,我们不禁要问:互联网经济驱动交易发生的机理是什么?用户基数和诚......一起来看看 《马云现象的经济学分析:互联网经济的八个关键命题》 这本书的介绍吧!