[译] 基于 TensorFlow + Python 的文本分类全程详解

栏目: Python · 发布时间: 6年前

内容简介:本教程将会建立一个神经网络模型,通过分析影评文本将影评分为正面或负面。这是一个典型的二分类问题,是一种重要且广泛适用的机器学习问题。我们将使用包含50,000条电影评论文本的IMDB(互联网电影数据库)数据集,并将其分为训练集(含25,000条影评)和测试集(含25,000条影评)。训练集和测试集是平衡的,也即两者的正面评论和负面评论的总数量相同。本教程将会使用tf.keras(一个高级API),用于在TensorFlow中构建和训练模型。如果你想了解利用tf.keras进行更高级的文本分类的教程,请参阅

本教程将会建立一个神经网络模型,通过分析影评文本将影评分为正面或负面。这是一个典型的二分类问题,是一种重要且广泛适用的机器学习问题。

我们将使用包含50,000条电影评论文本的IMDB(互联网电影数据库)数据集,并将其分为训练集(含25,000条影评)和测试集(含25,000条影评)。训练集和测试集是平衡的,也即两者的正面评论和负面评论的总数量相同。

本教程将会使用tf.keras(一个高级API),用于在TensorFlow中构建和训练模型。如果你想了解利用tf.keras进行更高级的文本分类的教程,请参阅MLCC文本分类指南。你可以使用以下 python 代码导入Keras:

import tensorflow as tf
from tensorflow import keras

import numpy as np

print(tf.__version__)

输出:

1.11.0

1

下载IMDB数据集

IMDB数据集已经集成于TensorFlow中。它已经被预处理,评论(单词序列)已经被转换为整数序列,整数序列中每个整数表示字典中的特定单词。

您可以使用以下代码下载IMDB数据集(如果您已经下载了,使用下面代码会直接读取该数据集):

imdb = keras.datasets.imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=
10000)

输出:

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.npz
17465344/17464789 [==============================] - 0s 0us/step

参数 num_words=10000 表示数据集保留了最常出现的10,000个单词。为了保持数据大小的可处理性,罕见的单词会被丢弃。

2

探索数据

让我们花一点时间来了解数据的格式。数据集经过预处理后,每个影评都是由整数数组构成,代替影评中原有的单词。每个影评都有一个标签,标签是0或1的整数值,其中0表示负面评论,1表示正面评论。

print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))

输出:

Training entries: 25000, labels: 25000

评论文本已转换为整数数组,每个整数表示字典中的特定单词。以下是第一篇评论文本转换后的形式:

print(train_data[0])

输出:

[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]

电影评论的长度可能不同,但是神经网络的输入必须是相同长度,因此我们需要稍后解决此问题。以下代码显示了第一篇评论和第二篇评论分别包含的单词数量:

len(train_data[0]), len(train_data[1])

输出:

(218, 189)

将整数转换回单词:

了解如何将整数转换回文本也许是有用的。在下面代码中,我们将创建一个辅助函数来查询包含有整数到字符串映射的字典对象:

# A dictionary mapping words to an integer index
word_index = imdb.get_word_index()

# The first indices are reserved
word_index = {k:(v+
3) for k,v in word_index.items()}
word_index[
"<PAD>"] = 0
word_index[
"<START>"] = 1
word_index[
"<UNK>"] = 2 # unknown
word_index[
"<UNUSED>"] = 3

reverse_word_index = dict([(value, key)
for (key, value) in word_index.items()])

def decode_review(text):
return ' '.join([reverse_word_index.get(i, '?') for i in text])

输出:

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb_word_index.json
1646592/1641221 [==============================] - 0s 0us/step

现在我们可以使用decode_review函数来查看解码后的第一篇影评文本:

decode_review(train_data[0])

输出:

"

  
 
   this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert
 
   
  
    is an amazing actor and now the same being director
  
    
   
     father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for
   
     
    
      and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also
    
      
     
       to the two little boy's that played the
     
       
      
        of norman and paul they were just brilliant children are often left out of the
      
        
       
         list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don't you think the whole story was so lovely because it was true and was someone's life after all that was shared with us all"
      
        
     
       
    
      
   
     
  
    
 
   

  

3

准备数据

在输入到神经网络之前,整数数组形式的评论必须转换为张量。这种转换可以通过以下两种方式完成:

  • 方法一:对数组进行独热编码(One-hot-encode),将其转换为0和1的向量。例如序列[3,5]将成为一个10,000维的向量,除索引3和5为1外,其余全部为零。然后,将其作为我们网络中的第一层——全连接层(稠密层,Dense layer)——以处理浮点向量数据。然而,这种方法会占用大量内存,需要一个 num_words * num_reviews 大小的矩阵。

  • 方法二:填充数组,使它们都具有相同的长度,然后创建一个形状为 max_length * num_reviews 的整数张量。我们可以使用能够处理这种形状的嵌入层(embedding layer)作为我们神经网络中的第一层。

在本教程中,我们使用第二种方法。

由于电影评论的长度必须相同,我们使用 pad_sequences 函数对长度进行标准化:

train_data = keras.preprocessing.sequence.pad_sequences(train_data,
value=word_index[
"<PAD>"],
padding=
'post',
maxlen=
256)

test_data = keras.preprocessing.sequence.pad_sequences(test_data,
value=word_index[
"<PAD>"],
padding=
'post',
maxlen=
256)

我们来看现在影评的长度:

len(train_data[0]), len(train_data[1])

输出:

(256, 256)

查看填充后的第一篇影评:

print(train_data[0])

输出:

[   1   14   22   16   43  530  973 1622 1385   65  458 4468   66 3941
    4  173   36  256    5   25  100   43  838  112   50  670    2    9
   35  480  284    5  150    4  172  112  167    2  336  385   39    4
  172 4536 1111   17  546   38   13  447    4  192   50   16    6  147
 2025   19   14   22    4 1920 4613  469    4   22   71   87   12   16
   43  530   38   76   15   13 1247    4   22   17  515   17   12   16
  626   18    2    5   62  386   12    8  316    8  106    5    4 2223
 5244   16  480   66 3785   33    4  130   12   16   38  619    5   25
  124   51   36  135   48   25 1415   33    6   22   12  215   28   77
   52    5   14  407   16   82    2    8    4  107  117 5952   15  256
    4    2    7 3766    5  723   36   71   43  530  476   26  400  317
   46    7    4    2 1029   13  104   88    4  381   15  297   98   32
 2071   56   26  141    6  194 7486   18    4  226   22   21  134  476
   26  480    5  144   30 5535   18   51   36   28  224   92   25  104
    4  226   65   16   38 1334   88   12   16  283    5   16 4472  113
  103   32   15   16 5345   19  178   32    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0]

4

构建模型

神经网络是由层的叠加来实现的,因此我们需要做两个架构性决策:

  • 模型中要使用多少层?

  • 每层要使用多少隐藏单元?

在本例中,输入数据由单词索引数组组成,要预测的标签不是0就是1。我们可以建立这样一个模型来解决这个问题:

# input shape is the vocabulary count used for the movie reviews (10,000 words)
vocab_size =
10000

model = keras.
Sequential()
model.add(keras.layers.
Embedding(vocab_size, 16))
model.add(keras.layers.
GlobalAveragePooling1D())
model.add(keras.layers.
Dense(16, activation=tf.nn.relu))
model.add(keras.layers.
Dense(1, activation=tf.nn.sigmoid))

model.summary()

输出:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, None, 16)          160000    
_________________________________________________________________
global_average_pooling1d (Gl (None, 16)                0         
_________________________________________________________________
dense (Dense)                (None, 16)                272       
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 17        
=================================================================
Total params: 160,289
Trainable params: 160,289
Non-trainable params: 0
_________________________________________________________________

在该模型中,以下4层按顺序堆叠以构建分类器:

  1. 第一层是嵌入层(Embedding layer)。该层采用整数编码的词汇表,并查找每个词索引的嵌入向量。这些向量是作为模型训练学习的。向量为输出数组添加维度,生成的维度为:(batch, sequence, embedding)。

  2. 接下来,全局平均池化层(GlobalAveragePooling1D layer)通过对序列维度求平均,为每个评论返回固定长度的输出向量。这允许模型以最简单的方式处理可变长度的输入。

  3. 这个固定长度的输出向量通过一个带有16个隐藏单元的全连接层(稠密层,Dense layer)进行传输。

  4. 最后一层与单个输出节点紧密连接。使用sigmoid激活函数,输出值是介于0和1之间的浮点数,表示概率或置信水平。

隐藏单元:

上述模型在输入和输出之间有两个中间或“隐藏”层。输出(单元、节点或神经元)的数量是层的表示空间的维度。换句话说,网络在学习内部表示时允许的自由度。

如果模型具有更多隐藏单元(更高维度的表示空间)和/或更多层,那么网络可以学习更复杂的表示。但是,它使网络的计算成本更高,并且可能导致学习不需要的模式——这些模式可以提高在训练数据上的表现,而不会提高在测试数据上的表现。这就是所谓的过度拟合,稍后我们将对此进行探讨。

损失函数和优化器:

模型需要一个损失函数和一个用于训练的优化器。由于这是二分类问题和概率输出模型(一个带有 sigmoid 激活的单个单元层),我们将使用 binary_crossentropy 损失函数。

这不是损失函数的唯一选择,例如您也可以选择 mean_squared_error 函数。但是通常 binary_crossentropy 在处理概率上表现更好——它测量概率分布之间的“距离”,或者测量真实分布和预测之间的“距离”(我们的例子中)。

日后,当我们探索回归问题(比如预测房价)时,我们将看到如何使用另一种称为均方误差(Mean Squared Error)的损失函数。

现在,使用优化器和损失函数来配置模型:

model.compile(optimizer=tf.train.AdamOptimizer(),
loss=
'binary_crossentropy',
metrics=[
'accuracy'])

5

创造验证集

在训练时,我们想要检查模型在以前没有见过的数据上的准确性。因而我们通过从原始训练数据中分离10,000个影评来创建验证集。(为什么现在不使用测试集呢?我们的目标是只使用训练数据开发和调整我们的模型,然后仅使用一次测试数据来评估我们模型的准确性)。

x_val = train_data[:10000]
partial_x_train = train_data[
10000:]

y_val = train_labels[:
10000]
partial_y_train = train_labels[
10000:]

6

训练模型

本教程采用小批量梯度下降法训练模型,每个mini—batches含有512个样本(影评),模型共训练了40个epoch。这就意味着在 x_trainy_train 张量上对所有样本进行了40次迭代。在训练期间,模型在验证集(含10,000个样本)上的损失值和准确率同样会被记录。

history = model.fit(partial_x_train,
partial_y_train,
epochs=
40,
batch_size=
512,
validation_data=(x_val, y_val),
verbose=
1)

输出:

Train on 15000 samples, validate on 10000 samples
Epoch 1/40
15000/15000 [==============================] - 1s 57us/step - loss: 0.6914 - acc: 0.5662 - val_loss: 0.6886 - val_acc: 0.6416
Epoch 2/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.6841 - acc: 0.7016 - val_loss: 0.6792 - val_acc: 0.6751
Epoch 3/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.6706 - acc: 0.7347 - val_loss: 0.6627 - val_acc: 0.7228
Epoch 4/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.6481 - acc: 0.7403 - val_loss: 0.6376 - val_acc: 0.7774
Epoch 5/40
15000/15000 [==============================] - 1s 40us/step - loss: 0.6150 - acc: 0.7941 - val_loss: 0.6017 - val_acc: 0.7862
Epoch 6/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.5719 - acc: 0.8171 - val_loss: 0.5596 - val_acc: 0.7996
Epoch 7/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.5230 - acc: 0.8400 - val_loss: 0.5145 - val_acc: 0.8266
Epoch 8/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.4738 - acc: 0.8559 - val_loss: 0.4717 - val_acc: 0.8407
Epoch 9/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.4288 - acc: 0.8671 - val_loss: 0.4343 - val_acc: 0.8500
Epoch 10/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.3889 - acc: 0.8794 - val_loss: 0.4034 - val_acc: 0.8558
Epoch 11/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.3558 - acc: 0.8875 - val_loss: 0.3805 - val_acc: 0.8607
Epoch 12/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.3285 - acc: 0.8942 - val_loss: 0.3585 - val_acc: 0.8675
Epoch 13/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.3039 - acc: 0.9001 - val_loss: 0.3432 - val_acc: 0.8707
Epoch 14/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.2836 - acc: 0.9056 - val_loss: 0.3299 - val_acc: 0.8739
Epoch 15/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.2661 - acc: 0.9102 - val_loss: 0.3197 - val_acc: 0.8766
Epoch 16/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.2512 - acc: 0.9145 - val_loss: 0.3114 - val_acc: 0.8780
Epoch 17/40
15000/15000 [==============================] - 1s 39us/step - loss: 0.2368 - acc: 0.9196 - val_loss: 0.3046 - val_acc: 0.8800
Epoch 18/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.2244 - acc: 0.9235 - val_loss: 0.2991 - val_acc: 0.8820
Epoch 19/40
15000/15000 [==============================] - 1s 44us/step - loss: 0.2129 - acc: 0.9279 - val_loss: 0.2950 - val_acc: 0.8825
Epoch 20/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.2027 - acc: 0.9313 - val_loss: 0.2912 - val_acc: 0.8826
Epoch 21/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1929 - acc: 0.9357 - val_loss: 0.2884 - val_acc: 0.8836
Epoch 22/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1840 - acc: 0.9394 - val_loss: 0.2868 - val_acc: 0.8843
Epoch 23/40
15000/15000 [==============================] - 1s 40us/step - loss: 0.1758 - acc: 0.9429 - val_loss: 0.2856 - val_acc: 0.8840
Epoch 24/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1677 - acc: 0.9475 - val_loss: 0.2842 - val_acc: 0.8850
Epoch 25/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1606 - acc: 0.9503 - val_loss: 0.2838 - val_acc: 0.8847
Epoch 26/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.1535 - acc: 0.9526 - val_loss: 0.2839 - val_acc: 0.8853
Epoch 27/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.1475 - acc: 0.9547 - val_loss: 0.2851 - val_acc: 0.8841
Epoch 28/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.1414 - acc: 0.9571 - val_loss: 0.2848 - val_acc: 0.8862
Epoch 29/40
15000/15000 [==============================] - 1s 39us/step - loss: 0.1356 - acc: 0.9585 - val_loss: 0.2859 - val_acc: 0.8860
Epoch 30/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1307 - acc: 0.9617 - val_loss: 0.2877 - val_acc: 0.8864
Epoch 31/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1248 - acc: 0.9645 - val_loss: 0.2893 - val_acc: 0.8856
Epoch 32/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1202 - acc: 0.9660 - val_loss: 0.2916 - val_acc: 0.8844
Epoch 33/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1149 - acc: 0.9685 - val_loss: 0.2936 - val_acc: 0.8853
Epoch 34/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1107 - acc: 0.9695 - val_loss: 0.2971 - val_acc: 0.8845
Epoch 35/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.1069 - acc: 0.9707 - val_loss: 0.2987 - val_acc: 0.8854
Epoch 36/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.1021 - acc: 0.9731 - val_loss: 0.3019 - val_acc: 0.8842
Epoch 37/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.0984 - acc: 0.9747 - val_loss: 0.3050 - val_acc: 0.8833
Epoch 38/40
15000/15000 [==============================] - 1s 42us/step - loss: 0.0951 - acc: 0.9753 - val_loss: 0.3089 - val_acc: 0.8826
Epoch 39/40
15000/15000 [==============================] - 1s 43us/step - loss: 0.0911 - acc: 0.9773 - val_loss: 0.3111 - val_acc: 0.8829
Epoch 40/40
15000/15000 [==============================] - 1s 41us/step - loss: 0.0876 - acc: 0.9795 - val_loss: 0.3149 - val_acc: 0.8829

7

评估模型

通过测试集来检验模型的表现。检验结果将返回两个值:损失值(表示我们的误差,值越低越好)和准确率。

results = model.evaluate(test_data, test_labels)

print(results)

输出:

25000/25000 [==============================] - 1s 36us/step
[0.33615295355796815, 0.87196]

本文中使用了相当简单的方法便可达到约87%的准确率。若采用更先进的方法,模型准确率应该接近95%。

8

绘图查看精确率和损失值随时间变化情况

model.fit() 函数会返回一个 History 对象,该对象包含一个字典,记录了训练期间发生的所有 事情。

history_dict = history.history
history_dict.keys()

输出:

dict_keys(['acc', 'val_loss', 'loss', 'val_acc'])

字典中共有四个条目,每个条目对应训练或验证期间一个受监控的指标。我们可以使用这些条目来绘制训练和验证期间的损失值、训练和验证期间的准确率,以进行对比。

import matplotlib.pyplot as plt

acc = history.history[
'acc']
val_acc = history.history[
'val_acc']
loss = history.history[
'loss']
val_loss = history.history[
'val_loss']

epochs = range(
1, len(acc) + 1)

# "bo" is for "blue dot"
plt.plot(epochs, loss,
'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss,
'b', label='Validation loss')
plt.title(
'Training and validation loss')
plt.xlabel(
'Epochs')
plt.ylabel(
'Loss')
plt.legend()

plt.show()

输出:

[译] 基于 TensorFlow + Python 的文本分类全程详解

plt.clf()   # clear figure
acc_values = history_dict[
'acc']
val_acc_values = history_dict[
'val_acc']

plt.plot(epochs, acc,
'bo', label='Training acc')
plt.plot(epochs, val_acc,
'b', label='Validation acc')
plt.title(
'Training and validation accuracy')
plt.xlabel(
'Epochs')
plt.ylabel(
'Accuracy')
plt.legend()

plt.show()

输出:

[译] 基于 TensorFlow + Python 的文本分类全程详解

在上面2张图中,点表示训练集的损失值和准确度,实线表示验证集的损失值和准确度。

图中,训练集的损失值随着epoch增大而减少,训练集的准确度随着epoch增大而增大。这在使用梯度下降优化时是符合预期的——在每次迭代时最小化期望数量。

但图中验证集的损失值和准确率似乎在大约二十个epoch后便已达到峰值,这是不应该出现的情况。这是过度拟合的一个例子:模型在训练数据上的表现比它在以前从未见过的数据上的表现要好。在此之后,模型由于在训练集上过度优化,将不适合应用于测试集。

对于这种特殊情况,我们可以通过在二十个左右的epoch后停止训练来防止过度拟合。在以后的教程中,您会看到如何使用回调自动执行此操作。

#@title MIT License
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
原文标题:Text classification with movie reviews
原文URL:https://www.tensorflow.org/tutorials/keras/basic_text_classification
翻译、校对和排版:李雪明、朝乐门

以上所述就是小编给大家介绍的《[译] 基于 TensorFlow + Python 的文本分类全程详解》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

An Introduction to the Analysis of Algorithms

An Introduction to the Analysis of Algorithms

Robert Sedgewick、Philippe Flajolet / Addison-Wesley Professional / 1995-12-10 / CAD 67.99

This book is a thorough overview of the primary techniques and models used in the mathematical analysis of algorithms. The first half of the book draws upon classical mathematical material from discre......一起来看看 《An Introduction to the Analysis of Algorithms》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码